Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Appl Environ Microbiol ; 87(21): e0126221, 2021 10 14.
Artigo em Inglês | MEDLINE | ID: mdl-34432495

RESUMO

Airborne infectious disease transmission events occur over a wide range of spatial scales and can be an important means of disease transmission. Physics- and biology-based models can assist in predicting airborne transmission events, overall disease incidence, and disease control strategy efficacy. We describe a new theory that extends current approaches for the case in which an individual is infected by a single airborne particle, including the scenario in which numerous infectious particles are present in the air but only one causes infection. A single infectious particle can contain more than one pathogenic microorganism and be physically larger than the pathogen itself. This approach allows robust relative risk estimates even when there is wide variation in (i) individual exposures and (ii) the individual response to that exposure (the pathogen dose-response function can take any mathematical form and vary by individual). Based on this theory, we propose the regional relative risk-a new metric, distinct from the traditional relative risk metric, that compares the risk between two regions. In theory, these regions can range from individual rooms to large geographic areas. In this paper, we apply the regional relative risk metric to outdoor disease transmission events over spatial scales ranging from 50 m to 20 km, demonstrating that in many common cases minimal input information is required to use the metric. Also, we demonstrate that the model predictions are consistent with data from prior outbreaks. Future efforts could apply and validate this theory for other spatial scales, such as transmission within indoor environments. This work provides context for (i) the initial stages of an airborne disease outbreak and (ii) larger-scale disease spread, including unexpected low-probability disease "sparks" that potentially affect remote populations, a key practical issue in controlling airborne disease outbreaks. IMPORTANCE Airborne infectious disease transmission events occur over a wide range of spatial scales and can be important to disease outbreaks. We describe a new physics- and biology-based theory for the important case in which individuals are infected by a single airborne particle (even though numerous infectious particles can be emitted into the air and inhaled). Based on this theory, we propose a new epidemiological metric, regional relative risk, that compares the risk between two geographic regions (in theory, regions can range from individual rooms to large areas). Our modeling of transmission events predicts that for many scenarios of interest, minimal information is required to use this metric for locations 50 m to 20 km downwind. This prediction is consistent with data from prior disease outbreaks. Future efforts could apply and validate this theory for other spatial scales, such as indoor environments. Our results may be applicable to many airborne diseases a priori, as these results depend on the physics of airborne particulate dispersion.


Assuntos
Microbiologia do Ar , Infecções/transmissão , Humanos , Modelos Teóricos , Física , Risco
2.
Appl Environ Microbiol ; 87(4)2021 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-33277266

RESUMO

Airborne disease transmission is central to many scientific disciplines including agriculture, veterinary biosafety, medicine, and public health. Legal and regulatory standards are in place to prevent agricultural, nosocomial, and community airborne disease transmission. However, the overall importance of the airborne pathway is underappreciated, e.g.,, US National Library of Medicine's Medical Subjects Headings (MESH) thesaurus lacks an airborne disease transmission indexing term. This has practical consequences as airborne precautions to control epidemic disease spread may not be taken when airborne transmission is important, but unrecognized. Publishing clearer practical methodological guidelines for surveillance studies and disease outbreak evaluations could help address this situation.To inform future work, this paper highlights selected, well-established airborne transmission events - largely cases replicated in multiple, independently conducted scientific studies. Methodologies include field experiments, modeling, epidemiology studies, disease outbreak investigations and mitigation studies. Collectively, this literature demonstrates that airborne viruses, bacteria, and fungal pathogens have the capability to cause disease in plants, animals, and humans over multiple distances - from near range (< 5 m) to continental (> 500 km) in scale. The plausibility and implications of undetected airborne disease transmission are discussed, including the notable underreporting of disease burden for several airborne transmitted diseases.

3.
Sci Rep ; 10(1): 12399, 2020 07 24.
Artigo em Inglês | MEDLINE | ID: mdl-32709938

RESUMO

To explore how airborne microbial patterns change with height above the Earth's surface, we flew NASA's C-20A aircraft on two consecutive days in June 2018 along identical flight paths over the US Sierra Nevada mountain range at four different altitudes ranging from 10,000 ft to 40,000 ft. Bioaerosols were analyzed by metagenomic DNA sequencing and traditional culturing methods to characterize the composition and diversity of atmospheric samples compared to experimental controls. The relative abundance of taxa changed significantly at each altitude sampled, and the diversity profile shifted across the two sampling days, revealing a regional atmospheric microbiome that is dynamically changing. The most proportionally abundant microbial genera were Mycobacterium and Achromobacter at 10,000 ft; Stenotrophomonas and Achromobacter at 20,000 ft; Delftia and Pseudoperonospora at 30,000 ft; and Alcaligenes and Penicillium at 40,000 ft. Culture-based detections also identified viable Bacillus zhangzhouensis, Bacillus pumilus, and Bacillus spp. in the upper troposphere. To estimate bioaerosol dispersal, we developed a human exposure likelihood model (7-day forecast) using general aerosol characteristics and measured meteorological conditions. By coupling metagenomics to a predictive atmospheric model, we aim to set the stage for field campaigns that monitor global bioaerosol emissions and impacts.

4.
Proc Biol Sci ; 278(1713): 1761-9, 2011 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-21450741

RESUMO

This review examines whether exfoliated, virus-infected animal skin cells could be an important source of infectious foot and mouth disease virus (FMDV) aerosols. Infectious material rafting on skin cell aerosols is an established means of transmitting other diseases. The evidence for a similar mechanism for FMDV is: (i) FMDV is trophic for animal skin and FMDV epidermis titres are high, even in macroscopically normal skin; (ii) estimates for FMDV skin cell aerosol emissions appear consistent with measured aerosol emission rates and are orders of magnitude larger than the minimum infectious dose; (iii) the timing of infectious FMDV aerosol emissions is consistent with the timing of high FMDV skin concentrations; (iv) measured FMDV aerosol sizes are consistent with skin cell aerosols; and (v) FMDV stability in natural aerosols is consistent with that expected for skin cell aerosols. While these findings support the hypothesis, this review is insufficient, in and of itself, to prove the hypothesis and specific follow-on experiments are proposed. If this hypothesis is validated, (i) new FMDV detection, management and decontamination approaches could be developed and (ii) the relevance of skin cells to the spread of viral disease may need to be reassessed as skin cells may protect viruses against otherwise adverse environmental conditions.


Assuntos
Aerossóis , Vírus da Febre Aftosa/fisiologia , Febre Aftosa/transmissão , Gado/virologia , Pele/virologia , Animais , Pele/citologia , Eliminação de Partículas Virais
5.
J Hazard Mater ; 164(2-3): 1293-303, 2009 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-18976854

RESUMO

Accidents that involve large (multi-ton) releases of toxic industrial chemicals and form dense-gas clouds often yield far fewer fatalities, casualties and environmental effects than standard assessment and emergency response models predict. This modeling study, which considers both dense-gas turbulence suppression and deposition to environmental objects (e.g. buildings), demonstrates that dry deposition to environmental objects may play a significant role in reducing the distance at which adverse impacts occur--particularly under low-wind, stable atmospheric conditions which are often considered to be the worst-case scenario for these types of releases. The degree to which the released chemical sticks to (or reacts with) environmental surfaces is likely a key parameter controlling hazard extents. In all modeled cases, the deposition to vertical surfaces of environmental objects (e.g. building walls) was more efficient in reducing atmospheric chemical concentrations than deposition to the earth's surface. This study suggests that (1) hazard extents may vary widely by release environment (e.g. grasslands vs. suburbia) and release conditions (e.g. sunlight or humidity may change the rate at which chemicals react with a surface) and (2) greenbelts (or similar structures) may dramatically reduce the impacts of large-scale releases. While these results are demonstrated to be qualitatively consistent with the downwind extent of vegetation damage in two chlorine releases, critical knowledge gaps exist and this study provides recommendations for additional experimental studies.


Assuntos
Acidentes , Vazamento de Resíduos Químicos , Gases , Modelos Teóricos , Poluição do Ar , Exposição Ambiental
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA