Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
1.
Arch Toxicol ; 94(8): 2559-2585, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32372214

RESUMO

Early identification of toxicity associated with new chemical entities (NCEs) is critical in preventing late-stage drug development attrition. Liver injury remains a leading cause of drug failures in clinical trials and post-approval withdrawals reflecting the poor translation between traditional preclinical animal models and human clinical outcomes. For this reason, preclinical strategies have evolved over recent years to incorporate more sophisticated human in vitro cell-based models with multi-parametric endpoints. This review aims to highlight the evolution of the strategies adopted to improve human hepatotoxicity prediction in drug discovery and compares/contrasts these with recent activities in our lab. The key role of human exposure and hepatic drug uptake transporters (e.g. OATPs, OAT2) is also elaborated.


Assuntos
Doença Hepática Induzida por Substâncias e Drogas/prevenção & controle , Desenvolvimento de Medicamentos , Descoberta de Drogas , Fígado/efeitos dos fármacos , Testes de Toxicidade , Alternativas aos Testes com Animais , Animais , Células Cultivadas , Doença Hepática Induzida por Substâncias e Drogas/etiologia , Doença Hepática Induzida por Substâncias e Drogas/metabolismo , Doença Hepática Induzida por Substâncias e Drogas/patologia , Humanos , Fígado/metabolismo , Fígado/patologia , Variações Dependentes do Observador , Reprodutibilidade dos Testes , Medição de Risco , Especificidade da Espécie
2.
Sci Rep ; 8(1): 2405, 2018 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-29402925

RESUMO

The release of aromatic amines from drugs and other xenobiotics resulting from the hydrolysis of metabolically labile amide bonds presents a safety risk through several mechanisms, including geno-, hepato- and nephrotoxicity. Whilst multiple in vitro systems used for studying metabolic stability display serine hydrolase activity, responsible for the hydrolysis of amide bonds, they vary in their efficiency and selectivity. Using a range of amide-containing probe compounds (0.5-10 µM), we have investigated the hydrolytic activity of several rat, minipig and human-derived in vitro systems - including Supersomes, microsomes, S9 fractions and hepatocytes - with respect to their previously observed human in vivo metabolism. In our hands, human carboxylesterase Supersomes and rat S9 fractions systems showed relatively poor prediction of human in vivo metabolism. Rat S9 fractions, which are commonly utilised in the Ames test to assess mutagenicity, may be limited in the detection of genotoxic metabolites from aromatic amides due to their poor concordance with human in vivo amide hydrolysis. In this study, human liver microsomes and minipig subcellular fractions provided more representative models of human in vivo hydrolytic metabolism of the aromatic amide compounds tested.


Assuntos
Amidas/metabolismo , Carboxilesterase/metabolismo , Hepatócitos/metabolismo , Microssomos Hepáticos/metabolismo , Frações Subcelulares/metabolismo , Acetaminofen/metabolismo , Acetanilidas/metabolismo , Anilidas/metabolismo , Animais , Flutamida/metabolismo , Humanos , Hidrólise , Lidocaína/metabolismo , Masculino , Niclosamida/metabolismo , Nitrilas/metabolismo , Prilocaína/metabolismo , Cultura Primária de Células , Propanil/metabolismo , Ratos , Ratos Sprague-Dawley , Suínos , Porco Miniatura , Compostos de Tosil/metabolismo
3.
Toxicol In Vitro ; 34: 161-170, 2016 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-27083147

RESUMO

Drug induced mitochondrial dysfunction has been implicated in organ toxicity and the withdrawal of drugs or black box warnings limiting their use. The development of highly specific and sensitive in vitro assays in early drug development would assist in detecting compounds which affect mitochondrial function. Here we report the combination of two in vitro assays for the detection of drug induced mitochondrial toxicity. The first assay measures cytotoxicity after 24h incubation of test compound in either glucose or galactose conditioned media (Glu/Gal assay). Compounds with a greater than 3-fold toxicity in galactose media compared to glucose media imply mitochondrial toxicity. The second assay measures mitochondrial respiration, glycolysis and a reserve capacity with mechanistic responses observed within one hour following exposure to test compound. In order to assess these assays a total of 72 known drugs and chemicals were used. Dose-response data was normalised to 100× Cmax giving a specificity, sensitivity and accuracy of 100%, 81% and 92% respectively for this combined approach.


Assuntos
Bioensaio , Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos , Mitocôndrias/efeitos dos fármacos , Respiração Celular , Meios de Cultura , Galactose , Glucose , Glicólise , Células Hep G2 , Humanos , Mitocôndrias/metabolismo
4.
Toxicol In Vitro ; 29(3): 621-30, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25668432

RESUMO

Drug induced phospholipidosis (PLD) is an adverse side effect which can affect registration of new drug entities. Phospholipids can accumulate in lysosomes, organelles essential in cellular biogenesis and if compromised can lead to cellular toxicity. Drug accumulation in lysosomes (lysosomotropism) is a known mechanism leading to PLD, however phospholipidosis can also occur indirectly by altering synthesis and processing of phospholipids. Drug induced PLD can be measured in vitro using High Content Screening (HCS) approaches, by either determining accumulation of phospholipids conjugated to dyes in cells or by determining accumulation of drugs within lysosomes, by competitive loss of lysosomal dye uptake. In this study we validate two in vitro assays using HepG2 and H9c2 cells in conjunction with in silico models based on physico-chemical properties using 56 compounds (28 phospholipidogenic, 25 non-phospholipidogenic and three kidney specific). Using HCS to determine PLD and lysosomal trapping in HepG2 cells in combination with in silico modelling increase the overall prediction of PLD in vivo with a sensitivity of 96%, specificity of 92% and overall accuracy of 94%. The findings of this study demonstrate the applicability of in vitro and in silico approaches to understand the mechanism underlying PLD and the utility of these approaches as a screening strategy in the pharmaceutical industry to select drug candidates with a low in vivo PLD liability.


Assuntos
Lipidoses/induzido quimicamente , Fosfolipídeos/metabolismo , Algoritmos , Animais , Simulação por Computador , Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos , Células Hep G2 , Ensaios de Triagem em Larga Escala , Humanos , Lisossomos/metabolismo , Modelos Biológicos , Preparações Farmacêuticas/química , Ratos , Reprodutibilidade dos Testes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA