Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Virus Evol ; 10(1): veae035, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38774310

RESUMO

The recombinant SARS-CoV-2 Omicron XBB.1.5 variant was first detected in New York City (NYC) and rapidly became the predominant variant in the area by early 2023. The increased occurrence of circulating variants within the SARS-CoV-2 XBB-sublineage prompted the modification of COVID-19 mRNA vaccines by Moderna and Pfizer-BioNTech. This update, implemented in mid-September 2023, involved the incorporation of a monovalent XBB.1.5 component. Considering that NYC probably played a central role in the emergence of the XBB.1.5 variant, we conducted phylogeographic analysis to investigate the emergence and spread of this variant in the metropolitan area. Our analysis confirms that XBB.1.5 emerged within or near the NYC area and indicates that XBB.1.5 had a diffusion velocity similar to that of the variant Alpha in the same study area. Additionally, the analysis of 2,392 genomes collected in the context of the genomic surveillance program at NYU Langone Health system showed that there was no increased proportion of XBB.1.5, relative to all cocirculating variants, in the boosted compared to unvaccinated individuals. This study provides a comprehensive description of the emergence and dissemination of XBB.1.5.

2.
Nat Protoc ; 18(12): 3821-3855, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37833423

RESUMO

One of the main challenges in the fight against coronavirus disease 2019 (COVID-19) stems from the ongoing evolution of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) into multiple variants. To address this hurdle, research groups around the world have independently developed protocols to isolate these variants from clinical samples. These isolates are then used in translational and basic research-for example, in vaccine development, drug screening or characterizing SARS-CoV-2 biology and pathogenesis. However, over the course of the COVID-19 pandemic, we have learned that the introduction of artefacts during both in vitro isolation and subsequent propagation to virus stocks can lessen the validity and reproducibility of data. We propose a rigorous pipeline for the generation of high-quality SARS-CoV-2 variant clonal isolates that minimizes the acquisition of mutations and introduces stringent controls to detect them. Overall, the process includes eight stages: (i) cell maintenance, (ii) isolation of SARS-CoV-2 from clinical specimens, (iii) determination of infectious virus titers by plaque assay, (iv) clonal isolation by plaque purification, (v) whole-virus-genome deep-sequencing, (vi and vii) amplification of selected virus clones to master and working stocks and (viii) sucrose purification. This comprehensive protocol will enable researchers to generate reliable SARS-CoV-2 variant inoculates for in vitro and in vivo experimentation and will facilitate comparisons and collaborative work. Quality-controlled working stocks for most applications can be generated from acquired biorepository virus within 1 month. An additional 5-8 d are required when virus is isolated from clinical swab material, and another 6-7 d is needed for sucrose-purifying the stocks.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/genética , Pandemias/prevenção & controle , Reprodutibilidade dos Testes , Sacarose
3.
EBioMedicine ; 97: 104843, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37866115

RESUMO

BACKGROUND: High rates of vaccination and natural infection drive immunity and redirect selective viral adaptation. Updated boosters are installed to cope with drifted viruses, yet data on adaptive evolution under increasing immune pressure in a real-world situation are lacking. METHODS: Cross-sectional study to characterise SARS-CoV-2 mutational dynamics and selective adaptation over >1 year in relation to vaccine status, viral phylogenetics, and associated clinical and demographic variables. FINDINGS: The study of >5400 SARS-CoV-2 infections between July 2021 and August 2022 in metropolitan New York portrayed the evolutionary transition from Delta to Omicron BA.1-BA.5 variants. Booster vaccinations were implemented during the Delta wave, yet booster breakthrough infections and SARS-CoV-2 re-infections were almost exclusive to Omicron. In adjusted logistic regression analyses, BA.1, BA.2, and BA.5 had a significant growth advantage over co-occurring lineages in the boosted population, unlike BA.2.12.1 or BA.4. Selection pressure by booster shots translated into diffuse adaptive evolution in Delta spike, contrasting with strong, receptor-binding motif-focused adaptive evolution in BA.2-BA.5 spike (Fisher Exact tests; non-synonymous/synonymous mutation rates per site). Convergent evolution has become common in Omicron, engaging spike positions crucial for immune escape, receptor binding, or cleavage. INTERPRETATION: Booster shots are required to cope with gaps in immunity. Their discriminative immune pressure contributes to their effectiveness but also requires monitoring of selective viral adaptation processes. Omicron BA.2 and BA.5 had a selective advantage under booster vaccination pressure, contributing to the evolution of BA.2 and BA.5 sublineages and recombinant forms that predominate in 2023. FUNDING: The study was supported by NYU institutional funds and partly by the Cancer Center Support Grant P30CA016087 at the Laura and Isaac Perlmutter Cancer Center.


Assuntos
COVID-19 , Vacinas , Humanos , SARS-CoV-2/genética , COVID-19/epidemiologia , COVID-19/prevenção & controle , Estudos Transversais , Infecções Irruptivas , Anticorpos Antivirais , Anticorpos Neutralizantes
4.
Res Sq ; 2023 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-37577603

RESUMO

Aberrations in the capacity of DNA/chromatin modifiers and transcription factors to bind non-coding regions can lead to changes in gene regulation and impact disease phenotypes. However, identifying distal regulatory elements and connecting them with their target genes remains challenging. Here, we present MethNet, a pipeline that integrates large-scale DNA methylation and gene expression data across multiple cancers, to uncover novel cis regulatory elements (CREs) in a 1Mb region around every promoter in the genome. MethNet identifies clusters of highly ranked CREs, referred to as 'hubs', which contribute to the regulation of multiple genes and significantly affect patient survival. Promoter-capture Hi-C confirmed that highly ranked associations involve physical interactions between CREs and their gene targets, and CRISPRi based scRNA Perturb-seq validated the functional impact of CREs. Thus, MethNet-identified CREs represent a valuable resource for unraveling complex mechanisms underlying gene expression, and for prioritizing the verification of predicted non-coding disease hotspots.

5.
PLoS Pathog ; 19(4): e1011348, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-37071654

RESUMO

Since the latter part of 2020, SARS-CoV-2 evolution has been characterised by the emergence of viral variants associated with distinct biological characteristics. While the main research focus has centred on the ability of new variants to increase in frequency and impact the effective reproductive number of the virus, less attention has been placed on their relative ability to establish transmission chains and to spread through a geographic area. Here, we describe a phylogeographic approach to estimate and compare the introduction and dispersal dynamics of the main SARS-CoV-2 variants - Alpha, Iota, Delta, and Omicron - that circulated in the New York City area between 2020 and 2022. Notably, our results indicate that Delta had a lower ability to establish sustained transmission chains in the NYC area and that Omicron (BA.1) was the variant fastest to disseminate across the study area. The analytical approach presented here complements non-spatially-explicit analytical approaches that seek a better understanding of the epidemiological differences that exist among successive SARS-CoV-2 variants of concern.


Assuntos
COVID-19 , Humanos , COVID-19/epidemiologia , COVID-19/virologia , Cidade de Nova Iorque/epidemiologia , SARS-CoV-2/genética
6.
iScience ; 26(2): 106075, 2023 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-36844451

RESUMO

The emergence of recombinant viruses is a threat to public health, as recombination may integrate variant-specific features that together result in escape from treatment or immunity. The selective advantages of recombinant SARS-CoV-2 isolates over their parental lineages remain unknown. We identified a Delta-Omicron (AY.45-BA.1) recombinant in an immunosuppressed transplant recipient treated with monoclonal antibody Sotrovimab. The single recombination breakpoint is located in the spike N-terminal domain adjacent to the Sotrovimab binding site. While Delta and BA.1 are sensitive to Sotrovimab neutralization, the Delta-Omicron recombinant is highly resistant. To our knowledge, this is the first described instance of recombination between circulating SARS-CoV-2 variants as a functional mechanism of resistance to treatment and immune escape.

7.
Clin Infect Dis ; 76(2): 342-345, 2023 01 13.
Artigo em Inglês | MEDLINE | ID: mdl-36156117

RESUMO

New mutations conferring resistance to SARS-CoV-2 therapeutics have important clinical implications. We describe the first cases of an independently acquired V792I RNA-dependent RNA polymerase mutation developing in renal transplant recipients after remdesivir exposure. Our work underscores the need for augmented efforts to identify concerning mutations and address their clinical implications.


Assuntos
COVID-19 , Humanos , SARS-CoV-2 , Antivirais/uso terapêutico , Transplantados , Tratamento Farmacológico da COVID-19
8.
Res Sq ; 2022 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-35794888

RESUMO

The medical community currently lacks robust data regarding the incidence, prevalence, and clinical significance of mutations associated with resistance to severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) therapeutics. This report describes two renal transplant recipients who, after remdesivir exposure, developed a de novo V792I RNA-dependent RNA polymerase (RdRp) mutation that has recently been found to confer resistance to remdesivir in vitro . To the best of our knowledge, this publication is the first to document the emergence of V792I in patients treated with remdesivir. Our work underscores the critical need for augmented efforts to identify concerning mutations and address their clinical implications.

9.
EBioMedicine ; 82: 104141, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35906172

RESUMO

BACKGROUND: In 2021, Delta became the predominant SARS-CoV-2 variant worldwide. While vaccines have effectively prevented COVID-19 hospitalization and death, vaccine breakthrough infections increasingly occurred. The precise role of clinical and genomic determinants in Delta infections is not known, and whether they contributed to increased rates of breakthrough infections compared to unvaccinated controls. METHODS: We studied SARS-CoV-2 variant distribution, dynamics, and adaptive selection over time in relation to vaccine status, phylogenetic relatedness of viruses, full genome mutation profiles, and associated clinical and demographic parameters. FINDINGS: We show a steep and near-complete replacement of circulating variants with Delta between May and August 2021 in metropolitan New York. We observed an increase of the Delta sublineage AY.25 (14% in vaccinated, 7% in unvaccinated), its spike mutation S112L, and AY.44 (8% in vaccinated, 2% in unvaccinated) with its nsp12 mutation F192V in breakthroughs. Delta infections were associated with younger age and lower hospitalization rates than Alpha. Delta breakthrough infections increased significantly with time since vaccination, and, after adjusting for confounders, they rose at similar rates as in unvaccinated individuals. INTERPRETATION: We observed a modest adaptation of Delta genomes in breakthrough infections in New York, suggesting an improved genomic framework to support Delta's epidemic growth in times of waning vaccine protection despite limited impact on vaccine escape. FUNDING: The study was supported by NYU institutional funds. The NYULH Genome Technology Center is partially supported by the Cancer Center Support Grant P30CA016087 at the Laura and Isaac Perlmutter Cancer Center.


Assuntos
COVID-19 , SARS-CoV-2 , COVID-19/epidemiologia , COVID-19/genética , Genômica , Humanos , New York/epidemiologia , Filogenia , SARS-CoV-2/genética
10.
bioRxiv ; 2022 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-35411351

RESUMO

Background: The emergence of recombinant viruses is a threat to public health. Recombination of viral variants may combine variant-specific features that together catalyze viral escape from treatment or immunity. The selective advantages of recombinant SARS-CoV-2 isolates over their parental lineages remain unknown. Methods: Multi-method amplicon and metagenomic sequencing of a clinical swab and the in vitro grown virus allowed for high-confidence detection of a novel recombinant variant. Mutational, phylogeographic, and structural analyses determined features of the recombinant genome and spike protein. Neutralization assays using infectious as well as pseudotyped viruses and point mutants thereof defined the recombinant's sensitivity to a panel of monoclonal antibodies and sera from vaccinated and/or convalescent individuals. Results: A novel Delta-Omicron SARS-CoV-2 recombinant was identified in an unvaccinated, immunosuppressed kidney transplant recipient treated with monoclonal antibody Sotrovimab. The recombination breakpoint is located in the spike N-terminal domain, adjacent to the Sotrovimab quaternary binding site, and results in a 5'-Delta AY.45 and a 3'-Omicron BA.1 mosaic spike protein. Delta and BA.1 are sensitive to Sotrovimab neutralization, whereas the Delta-Omicron recombinant is highly resistant to Sotrovimab, both with and without the RBD resistance mutation E340D. Conclusions: Recombination between circulating SARS-CoV-2 variants can functionally contribute to immune escape. It is critical to validate phenotypes of mosaic viruses and monitor immunosuppressed COVID-19 patients treated with monoclonal antibodies for the selection of recombinant and immune escape variants. (Funded by NYU, the National Institutes of Health, and others).

11.
Emerg Infect Dis ; 28(4): 881-883, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35130474

RESUMO

Of 379 severe acute respiratory syndrome coronavirus 2 samples collected in New York, USA, we detected 86 Omicron variant sequences containing Delta variant mutation P681R. Probable explanations were co-infection with 2 viruses or contamination/amplification artifact. Repeated library preparation with fewer cycles showed the P681R calls were artifactual. Unusual mutations should be interpreted with caution.


Assuntos
COVID-19 , SARS-CoV-2 , Artefatos , Humanos , Mutação , New York/epidemiologia , SARS-CoV-2/genética
12.
medRxiv ; 2021 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-34909779

RESUMO

In 2021, Delta has become the predominant SARS-CoV-2 variant worldwide. While vaccines effectively prevent COVID-19 hospitalization and death, vaccine breakthrough infections increasingly occur. The precise role of clinical and genomic determinants in Delta infections is not known, and whether they contribute to increased rates of breakthrough infections compared to unvaccinated controls. Here, we show a steep and near complete replacement of circulating variants with Delta between May and August 2021 in metropolitan New York. We observed an increase of the Delta sublineage AY.25, its spike mutation S112L, and nsp12 mutation F192V in breakthroughs. Delta infections were associated with younger age and lower hospitalization rates than Alpha. Delta breakthroughs increased significantly with time since vaccination, and, after adjusting for confounders, they rose at similar rates as in unvaccinated individuals. Our data indicate a limited impact of vaccine escape in favor of Delta's increased epidemic growth in times of waning vaccine protection.

13.
J Clin Invest ; 131(18)2021 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-34375308

RESUMO

The efficacy of COVID-19 mRNA vaccines is high, but breakthrough infections still occur. We compared the SARS-CoV-2 genomes of 76 breakthrough cases after full vaccination with BNT162b2 (Pfizer/BioNTech), mRNA-1273 (Moderna), or JNJ-78436735 (Janssen) to unvaccinated controls (February-April 2021) in metropolitan New York, including their phylogenetic relationship, distribution of variants, and full spike mutation profiles. The median age of patients in the study was 48 years; 7 required hospitalization and 1 died. Most breakthrough infections (57/76) occurred with B.1.1.7 (Alpha) or B.1.526 (Iota). Among the 7 hospitalized cases, 4 were infected with B.1.1.7, including 1 death. Both unmatched and matched statistical analyses considering age, sex, vaccine type, and study month as covariates supported the null hypothesis of equal variant distributions between vaccinated and unvaccinated in χ2 and McNemar tests (P > 0.1), highlighting a high vaccine efficacy against B.1.1.7 and B.1.526. There was no clear association among breakthroughs between type of vaccine received and variant. In the vaccinated group, spike mutations in the N-terminal domain and receptor-binding domain that have been associated with immune evasion were overrepresented. The evolving dynamic of SARS-CoV-2 variants requires broad genomic analyses of breakthrough infections to provide real-life information on immune escape mediated by circulating variants and their spike mutations.


Assuntos
COVID-19/genética , COVID-19/imunologia , Evolução Molecular , Evasão da Resposta Imune/genética , Mutação , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus , Vacina de mRNA-1273 contra 2019-nCoV , Ad26COVS1 , Adulto , Idoso , Idoso de 80 Anos ou mais , Vacina BNT162 , COVID-19/prevenção & controle , Vacinas contra COVID-19/administração & dosagem , Vacinas contra COVID-19/efeitos adversos , Vacinas contra COVID-19/imunologia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Cidade de Nova Iorque , Domínios Proteicos , SARS-CoV-2/genética , SARS-CoV-2/imunologia , Glicoproteína da Espícula de Coronavírus/genética , Glicoproteína da Espícula de Coronavírus/imunologia
14.
Genome Res ; 30(12): 1781-1788, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33093069

RESUMO

Effective public response to a pandemic relies upon accurate measurement of the extent and dynamics of an outbreak. Viral genome sequencing has emerged as a powerful approach to link seemingly unrelated cases, and large-scale sequencing surveillance can inform on critical epidemiological parameters. Here, we report the analysis of 864 SARS-CoV-2 sequences from cases in the New York City metropolitan area during the COVID-19 outbreak in spring 2020. The majority of cases had no recent travel history or known exposure, and genetically linked cases were spread throughout the region. Comparison to global viral sequences showed that early transmission was most linked to cases from Europe. Our data are consistent with numerous seeds from multiple sources and a prolonged period of unrecognized community spreading. This work highlights the complementary role of genomic surveillance in addition to traditional epidemiological indicators.


Assuntos
COVID-19 , Genoma Viral , Pandemias , Filogenia , SARS-CoV-2/genética , Sequenciamento Completo do Genoma , COVID-19/epidemiologia , COVID-19/genética , COVID-19/transmissão , Feminino , Humanos , Masculino , Cidade de Nova Iorque
15.
medRxiv ; 2020 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-32511587

RESUMO

Effective public response to a pandemic relies upon accurate measurement of the extent and dynamics of an outbreak. Viral genome sequencing has emerged as a powerful approach to link seemingly unrelated cases, and large-scale sequencing surveillance can inform on critical epidemiological parameters. Here, we report the analysis of 864 SARS-CoV-2 sequences from cases in the New York City metropolitan area during the COVID-19 outbreak in Spring 2020. The majority of cases had no recent travel history or known exposure, and genetically linked cases were spread throughout the region. Comparison to global viral sequences showed that early transmission was most linked to cases from Europe. Our data are consistent with numerous seeds from multiple sources and a prolonged period of unrecognized community spreading. This work highlights the complementary role of genomic surveillance in addition to traditional epidemiological indicators.

16.
EMBO Rep ; 21(6): e49942, 2020 06 04.
Artigo em Inglês | MEDLINE | ID: mdl-32337838

RESUMO

Guanine-quadruplexes (G4) included in RNA molecules exert several functions in controlling gene expression at post-transcriptional level; however, the molecular mechanisms of G4-mediated regulation are still poorly understood. Here, we describe a regulatory circuitry operating in the early phases of murine muscle differentiation in which a long non-coding RNA (SMaRT) base pairs with a G4-containing mRNA (Mlx-γ) and represses its translation by counteracting the activity of the DHX36 RNA helicase. The time-restricted, specific effect of lnc-SMaRT on the translation of Mlx-γ isoform modulates the general subcellular localization of total MLX proteins, impacting on their transcriptional output and promoting proper myogenesis and mature myotube formation. Therefore, the circuitry made of lnc-SMaRT, Mlx-γ, and DHX36 not only plays an important role in the control of myogenesis but also unravels a molecular mechanism where G4 structures and G4 unwinding activities are regulated in living cells.


Assuntos
Quadruplex G , RNA Longo não Codificante , Animais , RNA Helicases DEAD-box/genética , RNA Helicases DEAD-box/metabolismo , DNA Helicases , Camundongos , RNA Longo não Codificante/genética , RNA Mensageiro/genética
17.
Cell Rep ; 23(3): 733-740, 2018 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-29669280

RESUMO

Cytoplasmic long non-coding RNAs have been shown to act at many different levels to control post-transcriptional gene expression, although their role in translational control is poorly understood. Here, we show that lnc-31, a non-coding RNA required for myoblast proliferation, promotes ROCK1 protein synthesis by stabilizing its translational activator, YB-1. We find that lnc-31 binds to the Rock1 mRNA as well as to the YB-1 protein and that translational activation requires physical interaction between the two RNA species. These results suggest a localized effect of YB-1 stabilization on the Rock1 mRNA. ROCK1 upregulation by lnc-31, in proliferative conditions, correlates well with the differentiation-repressing activity of ROCK1. We also show that, upon induction of differentiation, the downregulation of lnc-31, in conjunction with miR-152 targeting of Rock1, establishes a regulatory loop that reinforces ROCK1 repression and promotes myogenesis.


Assuntos
RNA Longo não Codificante/metabolismo , RNA Mensageiro/metabolismo , Fatores de Transcrição/metabolismo , Quinases Associadas a rho/metabolismo , Regiões 5' não Traduzidas , Animais , Linhagem Celular , Proliferação de Células , Camundongos , Ligação Proteica , Biossíntese de Proteínas , Interferência de RNA , RNA Longo não Codificante/antagonistas & inibidores , RNA Longo não Codificante/genética , RNA Interferente Pequeno/metabolismo , Fatores de Transcrição/genética , Quinases Associadas a rho/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA