Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Dalton Trans ; 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38747059

RESUMO

Potassium manganese fluoride phosphate, KMnPO4F, has been obtained through mild hydrothermal synthesis and characterized by scanning electron microscopy, microprobe analysis and X-ray diffraction. The compound possesses an orthorhombic symmetry and chiral space group P212121 with a = 4.7884(2), b = 9.0172(4), c = 9.5801(4) Å, and Z = 4. Its crystal structure is composed of Mn3+O4F square pyramids sharing vertices with PO4 tetrahedra. This anionic framework is neutralized by K+ cations. As the temperature decreases, a short-range correlation state (Tmax ∼ 35 K) of KMnPO4F is formed, followed by the establishment of antiferromagnetic (AFM) long-range order at TN = 25 K. The latter is marked by sharp λ-type anomalies in both Fisher's specific heat d(χ‖T)/dT and heat capacity Cp. Pulsed magnetic field measurements on the single crystals identify the a axis as the easy magnetic axis and reveal a spin-flop transition at µ0Hspin-flop = 19 T. Density functional theory indicates that in variance with the three-dimensional network of KMnPO4F, it is a two-dimensional Ising magnetic system represented by buckled layers of integer spins S = 2 of Mn3+ ions. The strongest AFM exchange interaction, J1 ∼ -13 K, couples Mn3+ ions into linear chains running along the a axis. The chains themselves are ferromagnetically connected (J3 ∼ -4 K) within the ab plane. The interplane AFM exchange interaction (J2 ∼ -1 K) is weak and frustrated.

3.
Inorg Chem ; 62(35): 14180-14190, 2023 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-37595259

RESUMO

ortho-Pyrovanadate (or ortho-diorthovanadate) K2Mn23+Mn2+O(OH)(VO4)(V2O7) synthesized hydrothermally crystallizes in the orthorhombic space group Pnma with a = 17.9155(5), b = 5.8940(2), c = 10.9971(3) Å, V = 1161.23(6) Å3, and Z = 4. Its crystal structure features linear chains of edge-sharing Mn3+O6 octahedra with every second pair of Mn3+O6 octahedra condensed with a Mn2+O6 octahedron on one side of a chain in a sawtooth pattern so that each sawtooth chain consists of a triangular trimer. These sawtooth chains, running parallel to the b axis and linked by the VO4 and V2O7 groups, form a framework with channels populated by K atoms. The new compound is a structural analogue of the mineral zoisite Ca2Al3O(OH)(SiO4)(Si2O7), showing a striking example of very different chemical compositions. K2Mn3O(OH)(VO4)(V2O7) undergoes a phase transition into an ordered antiferromagnetic (AFM) state at TN = 14.4 K, which was detected by high-frequency electron spin resonance as well as by both specific heat Cp and Fisher's specific heat d(χT)/dT measurements. However, this phase transition was not detected by magnetic susceptibility measurements. The origin of this puzzling observation was resolved by evaluating the spin exchanges of K2Mn3O(OH)(VO4)(V2O7), which revealed that each triangular trimer is a ferromagnetically coupled cluster, and the observed ordering involves an AFM ordering between the ferromagnetic (FM) clusters. This ordering is shrouded in magnetic susceptibility measurements due to the susceptibility contributions from the individual FM triangular trimers even below TN. We showed that the magnetic susceptibility of K2Mn3O(OH)(VO4)(V2O7) between ∼30 K and room temperature is satisfactorily described by an AFM chain made up of ferromagnetically coupled triangular clusters, as described by a few spin-exchange parameters.

4.
Acta Crystallogr B Struct Sci Cryst Eng Mater ; 79(Pt 1): 24-31, 2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36748895

RESUMO

The synthesis and characterization of a first salt-inclusion aluminophosphate oxocuprate, (Na,Li)3(Cl,OH)[Cu3OAl(PO4)3], obtained as single crystals, is reported. A novel phase, with a strongly pseudo-orthorhombic structure, is described as a monoclinic crystal structure established by the study of a pseudomerohedric microtwin. It was investigated using scanning electron microscopy, microprobe analysis and low-temperature X-ray diffraction. The composite crystal structure represents an original framework assembled from Cu-centered polyhedra, AlO6 octahedra and PO4 tetrahedra with channels, which incorporate the Na/Li salt component [(Na,Li)3(Cl,OH)]2+ that ensures electroneutrality of the compound. Layers of strongly corrugated chains of Cu-centered octahedra with shared edges and linked by PO4 tetrahedra are shown to be topologically identical with the layers also built from Cu-centered polyhedra and AsO4/VO4 tetrahedra forming the crystal structure of a fumarolic mineral aleutite, (M0.5Cl)[Cu5O2(AsO4)(VO4)] [Siidra et al. (2019). MinMag, 83, 847-853]. `Sawtooth chains' and pairs of Cu-centered octahedra inherent in the title structure may be of interest in solid-state physics, engaging studies in the field of low-dimensional and frustrated magnetism.

5.
Acta Crystallogr C Struct Chem ; 78(Pt 5): 287-294, 2022 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-35510434

RESUMO

Two new compounds, sodium copper nickel diorthophosphate, Na2CuNi(PO4)2 (I), and dimanganese copper diorthophosphate, Mn2Cu(PO4)2 (II), were synthesized hydrothermally, yielding single crystals, and were studied by X-ray diffraction. In the crystal structures, various transition metals of d-elements occupy symmetrically independent crystallographic positions with different coordination geometries. In the crystal structure of Na2NiCu(PO4)2, NiO6 and CuO6 octahedra share edges to form chains that PO4 groups link into a framework with cavities filled with Na atoms. Layered cationic fragments formed from dimers of MnO5 trigonal bipyramids and CuO4 square planes, sharing vertices, are connected through PO4 tetrahedra into a 3-periodic Mn2Cu(PO4)2 crystal structure. Structural correlations between Na2NiCu(PO4)2 and NaCuPO4 are discussed, and crystal-chemical details of the currently known exclusively synthetic mixed Mn/Cu and Ni/Cu phosphates are presented.

6.
Inorg Chem ; 61(12): 4879-4886, 2022 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-35298134

RESUMO

We synthesized single crystals of Na0.55Ni6(OH)3(H0.61PO4)4 (I) and polycrystals of (Na, Ni)0.64Ni5.68(OH)3(H0.67PO4)4 (II) with ellenbergerite-like structures using the hydrothermal method. The phases crystallize in the hexagonal space group P63mc with the following unit cell parameters: a = 12.5342(1) Å, c = 4.9470(1) Å, and V = 673.08(2) Å3 for I; a = 12.4708(2) Å, c = 4.9435(2) Å, and V = 665.82(2) Å3 for II; and Z = 2. Their crystal structures are based on a 3D framework built from NiO6 octahedra and PO4 tetrahedra. The difference between I and II lies in the way the structural channels are filled along the [001] direction. These channels accommodate segments of Na- and (Na, Ni)-centered chains of face-sharing octahedra in the structures I and II, respectively. The magnetic susceptibility χ and the specific heat Cp evidence pronounced low-dimensional magnetic behavior at elevated temperatures and the formation of the weakly ferromagnetic long-range order at TNI = 61 K and TNII = 63 K. Analysis of the χ(T) data within both chain and dimer spin models allows the estimation of the leading exchange interaction parameters in the compounds under study.

7.
Materials (Basel) ; 15(4)2022 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-35207951

RESUMO

Novel copper phosphate chloride has been obtained under middle-temperature hydrothermal conditions. Its crystal structure was established based on the low-temperature X-ray diffraction data: Na2Li0.75(Cs,K)0.5[Cu5(PO4)4Cl]·3.5(H2O,OH), sp. gr. C2/m, a = 19.3951(8) Å, b = 9.7627(3) Å, c = 9.7383(4) Å, ß = 99.329(4)°, T = 150 K, MoKα (λ = 0.71073 Å), R = 0.049. The crystal structure includes tetrameric copper clusters as the main building blocks, which are built of four CuO4Cl pyramids sharing apical Cl vertices. The clusters are combined through phosphate groups and additional copper-centered polyhedra to form two mostly ordered periodic layers. Between the layers and inside the framework channels, alkali ions, H2O molecules, or OH groups are statistically distributed. Na2Li0.75(Cs,K)0.5[Cu5(PO4)4Cl]·3.5(H2O,OH) is a synthetic modification of a sampleite-polymorph of the lavendulan mineral group and represents a new member in a mero-plesiotype series of copper phosphates and arsenates, for which the crystal structures contain two-periodic [Cu4X(TO4)4]∞ modules (T = As, P; X = Cl, O). Magnetically, this phase exhibits the phase transition at TC = 6.5 K, below which it possesses a weak ferromagnetic moment.

8.
Inorg Chem ; 60(15): 11450-11457, 2021 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-34264636

RESUMO

A novel sodium bismuth oxo-cuprate phosphate chloride, Na6Cu7BiO4(PO4)4[Cl2.23(OH)0.77], containing square-kagomé layers of Cu2+ has been synthesized by hydrothermal techniques. The compound crystallizes in the tetragonal space group P4/nmm, a = 10.0176(4), c = 10.8545(6), Z = 2, V = 1089.3(1) Å3, R1 = 0.021, wR = 0.053, S = 1.32. Its composite crystal structure includes [O4Cu6Bi]7+ layers, which are formed by the clusters of oxygen-centered tetrahedra [OCu3Bi]. These positively charged two periodic fragments are intercalated in a negatively charged [CuNa6Cl3(PO4)4]7- matrix built by Na-centered polyhedra, PO4 tetrahedra, and CuO4Cl pyramids. The composite character of the crystal structure of Na6Cu7BiO4(PO4)4[Cl2.23(OH)0.77], as well as the way of its self-assembly, are discussed in close connection with the sulfohalite Na6ClF(SO4)2 salt. It is shown that the "host-guest" model of the formation of the tetragonal Na6Cu7BiO4(PO4)4[Cl2.23(OH)0.77] phase is due to the group-subgroup symmetry relation with the cubic crystal structure of mineral sulfohalite and is also supported by the crystallization condition in excess sodium chloride. The magnetic subsystem of Na6Cu7BiO4(PO4)4[Cl2.23(OH)0.77] is represented by a dense square-kagomé network of 2Cu1 and 4Cu2 ions, decorated with weakly bonded Cu3 ions. Measurements of magnetization and heat capacity indicate the absence of long-range order up to 2 K, which makes this compound a candidate for a highly demanded spin liquid.

9.
Inorg Chem ; 60(13): 9461-9470, 2021 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-34128644

RESUMO

A novel modification of the KCoPO4, δ-phase has been prepared by hydrothermal synthesis at 553 K. The compound crystallizes in the orthorhombic system with the unit-cell parameters a = 8.5031(8), b = 10.2830(5), c = 54.170(4) Å. The crystal structure was determined based on synchrotron low-temperature single-crystal X-ray diffraction data obtained from an inversion twin in the space group P212121 and refined to R = 0.077 for 5156 reflections with I > 3σ(I). The δ-KCoPO4 possesses a new structure type which is based on a framework built from sharing vertices Co- and P-centered tetrahedra. The {CoPO4-}∞ construction of tetrahedra may be described as assembled from networks formed by two topologically diverse six-membered rings of tetrahedra stacked together through vertex-bridging contacts along the a axis. The ratio of the (UUUDDD) and (UUDUDD) rings, where (U) and (D) denote the orientation of the tetrahedra in the six-membered rings up and down relative to the plane grids, is equal to 5:1. The (UUDUDD) rings form bands parallel to the [010] direction each surrounded from both sides along the c axis by slabs of five ribbons width having alternative (UUUDDD) topology. Open in the [100] direction channels incorporate K+ ions; this structural feature permits to suppose ion-conductive and/or electrochemical properties of the title compound. The possible mechanism of the δ → γ phase transition is discussed on the basis of the crystal chemical analysis of the KCoPO4 polymorphs. The title compound orders magnetically at TN = 24.8 K.

10.
Acta Crystallogr B Struct Sci Cryst Eng Mater ; 77(Pt 2): 232-240, 2021 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-33843731

RESUMO

The synthesis and characterization of a new aluminophosphate, Na6[Al3P5O20], obtained as single crystals in the same experiment together with Cl-sodalite, Na8[Al6Si6O24]Cl2, is reported. Na6[Al3P5O20], with a strongly pseudo-orthorhombic lattice, is described by the monoclinic crystal structure established in the study of a pseudomerohedric microtwin. The design of Na6[Al3P5O20] can be interpreted as an alternative to sodalite, with a monoclinic (pseudo-orthorhombic) 2×4×1 super-structure and unit-cell parameters multiples of those of sodalite: a ≃ 2as, b ≃ 4bs and c ≃ cs. The triperiodic framework is built by AlO6, AlO4 and PO4 polyhedra having vertex-bridging contacts. While all the oxygen vertices of the Al-centred octahedra and tetrahedra are shared with phosphate groups, some of the PO4 tetrahedra remain `pendant', e.g. containing vertices not shared with other polyhedra of the aluminophosphate construction. Na atoms occupy framework channels and cavities surrounded by eight-, six- and four-membered windows with maximal effective pore widths of 4.86 × 3.24 and 4.31 × 3.18 Å. The generalized framework density is equal to 19.8, which means that the compound may be classified as a microporous zeolite. The Na6[Al3P5O20] crystal structure is discussed as being formed from octahedral rods arranged in two perpendicular directions, similar to the rods elongated in one direction in the NASICON-type compounds, which have been intensively investigated as promising materials for batteries. Analogous properties can be expected for phases with a modified composition of the Na6Al3P5O20 topology, where the Al atoms at the centres of octahedra are replaced by Fe, V or Cr.

11.
Dalton Trans ; 49(47): 17368-17374, 2020 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-33211032

RESUMO

Single crystals of dinickel diphosphate dihydrate, Ni2(H2O)2[P2O7], have been synthesized by a hydrothermal method. Its structure was refined in the monoclinic P21/n space group (unit cell parameters a = 6.2517(1) Å, b = 13.7892(3) Å, c = 7.2894(2) Å, ß = 94.507(2)°, V = 626.45(2) Å3, and Z = 4) based on low-temperature X-ray diffraction data until R- 0.016. Corrugated chains of NiO5(H2O) octahedra sharing edges are aligned in the [101[combining macron]] direction. They are linked into a three-dimensional framework through diphosphate groups and hydrogen bonds. A detailed crystal chemical analysis of the family Me2(H2O)2[X2O7] revealed correlations between the unit-cell parameters of the isotypic transition metal phosphates and arsenates, their structural features and the sizes of structure forming cations. Despite the isolation of the cis and trans edge-sharing infinite zigzag chains of Ni-centered octahedra from each other no pronounced low dimensionality is seen in the magnetic response of Ni2(H2O)2[P2O7]. The magnetic susceptibility χ evidences a short range correlation maximum at Tmax = 11.9 K accompanied by the onset of long-range magnetic order at TN = 9.4 K. Below TN, the title compound exhibits the features of an archetype three-dimensional easy-axis antiferromagnet which experiences a sequence of spin-flop and spin-flip phase transitions. Basing on specific heat Cp and magnetization M studies, the magnetic phase diagram of Ni2(H2O)2[P2O7] has been established.

12.
Acta Crystallogr B Struct Sci Cryst Eng Mater ; 76(Pt 3): 483-491, 2020 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-32831265

RESUMO

Two novel phases, potassium copper aluminium bis(phosphate), KCuAl[PO4]2 (I), and potassium zinc aluminium bis(phosphate-silicate), K(Al,Zn)2[(P,Si)O4]2 (II), were obtained in one hydrothermal synthesis experiment at 553 K. Their crystal structures have been studied using single-crystal X-ray diffraction. (I) is a new member of the A+M2+M3+[PO4]2 family. Its open 3D framework built by AlO5 and PO4 polyhedra includes small channels populated by columns of CuO6 octahedra sharing edges, and large channels where K+ ions are deposited. It is assumed that the stability of this structure type is due to the pair substitution of Cu/Al with Ni/Fe, Co/Fe or Mg/Fe in different representatives of the series. From the KCuAl[PO4]2 structural features, one may suppose it is a potentially electrochemically active material and/or possible low-temperature antiferromagnet. In accordance with results obtained from X-ray diffraction data, using scanning electron microscopy, microprobe analysis and detailed crystal chemical observation, (II) is considered as a product of epitaxial intergrowth of phosphate KAlZn[PO4]2 and silicate KAlSi[SiO4]2 components having closely similar crystal structures. The assembly of `coherent intergrowth' is described in the framework of a single diffraction pattern.

13.
Acta Crystallogr C Struct Chem ; 76(Pt 3): 302-310, 2020 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-32132289

RESUMO

Two novel K/Mn phosphate hydrates, namely, dipotassium trimanganese dipyrophosphate dihydrate, K2Mn3(H2O)2[P2O7]2, (I), and potassium manganese dialuminium triphosphate dihydrate, KMn(H2O)2[Al2(PO4)3], (II), were obtained in the form of single crystals during a single hydrothermal synthesis experiment. Their crystal structures were studied by X-ray diffraction. Both new compounds are members of the morphotropic series of phosphates with the following formulae: A2M3(H2O)2[P2O7]2, where A = K, NH4, Rb or Na and M = Mn, Fe, Co or Ni, and AM2+(H2O)2[M3+2(PO4)3], where A = Cs, Rb, K, NH4 or (H3O); M2+ = Mn, Fe, Co or Ni; and M3+ = Al, Ga or Fe. A detailed crystal chemical analysis revealed correlations between the unit-cell parameters of the members of the series, their structural features and the sizes of the cations. It has been shown that a mixed type anionic framework is formed in (II) by aluminophosphate [(AlO2)2(PO4)2]∞ layers, with a cationic topology similar to the Si/Al-topology of the crystal structures of feldspars. A study of the magnetic susceptibility of (II) demonstrates a paramagnetic behaviour of the compound.

14.
Acta Crystallogr C Struct Chem ; 75(Pt 5): 514-522, 2019 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-31062707

RESUMO

A novel phosphate, sodium zinc aluminium bis(phosphate), NaZnAl(PO4)2, was obtained under mild-temperature hydrothermal conditions at 553 K. The crystal structure has been studied using single-crystal X-ray experimental data. The pseudo-hexagonal phase NaZnAl(PO4)2 crystallizes in the monoclinic space group P21/c. Its unique crystal structure is based on a three-dimensional (3D) framework built by Zn-, Al- and P-centred tetrahedra sharing vertices. Channels parallel to the [101] and [-101] directions are limited by six- and eight-membered windows, and incorporate Na atoms. The new compound is discussed as a member of the morphotropic series AMM'PO4, where A = Na, K, Rb or NH4, M = Cu, Ni, Co, Fe, Zn or Mg and M' = Fe, Al or Ga. The title compound is the first Na representative within the series and is characterized by a 3D architecture of tetrahedra populated in an ordered manner by Zn2+, Al3+ and P5+ ions.

15.
Acta Crystallogr B Struct Sci Cryst Eng Mater ; 75(Pt 5): 822-829, 2019 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-32830761

RESUMO

A novel modification of the CsMnPO4 ß-phase was achieved by hydrothermal synthesis at 553 K. The compound crystallizes in the monoclinic system with the basic unit-cell parameters a = 11.0699 (4), b = 11.0819 (6), c = 9.1106 (3) Å, γ = 119.480 (5)o; the modulation vectors are q1 = 0.4a* and q2 = 0.4b*. The structure was determined based on single-crystal X-ray diffraction data obtained from a pseudo-merohedral twin using a superspace approach in the (3 + 2)D symmetry group P11a(a1,b1,0)0(a2,b2,0)0 and refined to R = 0.083 for 10 266 reflections with I > 3σ(I). It is considered as a low-temperature polymorph of CsMnPO4 with the same UUUDDD-type layer topology built by MnO4 and PO4 tetrahedra, and stacked in a framework in the same manner as ß-tridymite. Large open channels parallel to the [110] and [001] directions incorporate Cs atoms. All Cs atoms are distributed along the asuper = 55.35 (1) and bsuper = 55.41 (1) axes of the large unit cell with pseudo periods of asuper/5 and bsuper/5 which are broken mainly by the positions of oxygen atoms (orientation of Mn- and P-centered tetrahedra). The ß-phase is discussed as a member of the morphotropic series of manganese phosphates with large cations of AMnPO4, where A = Cs, Rb, K and Ag. The title compound is an antiferromagnet with the Neel temperature TN = 4.5 K.

16.
Acta Crystallogr B Struct Sci Cryst Eng Mater ; 75(Pt 5): 903-913, 2019 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-32830770

RESUMO

Single crystals of Rb2CaCu6(PO4)4O2 were synthesized by a hydrothermal method in the multicomponent system CuCl2-Ca(OH)2-RbCl-B2O3-Rb3PO4. The synthesis was carried out in the temperature range from 690 to 700 K and at the general pressure of 480-500 atm [1 atm = 101.325 kPa] from the mixture in the molar ratio 2CuO:CaO:Rb2O:B2O3:P2O5. The crystals studied by single-crystal X-ray analysis were found to be monoclinic, space group C2, a = 16.8913 (4), b = 5.6406 (1), c = 8.3591 (3) Å, ß = 93.919 (3)°, V = 794.57 (4) Å3. The crystal structure of Rb2CaCu6(PO4)4O2 is similar to that of shchurovskyite and dmisokolovite and is based upon a heteropolyhedral open framework formed by polar layers of copper polyhedra linked via isolated PO4 tetrahedra. The presence of well-isolated 2D heteropolyhedral layers in the title compound suggests low-dimensional magnetic behavior which is masked, however, by the fierce competition between multiple ferromagnetic and antiferromagnetic exchange interactions. At TC = 25 K, Rb2CaCu6(PO4)4O2 reaches a magnetically ordered state with large residual magnetization.

17.
Acta Crystallogr C Struct Chem ; 74(Pt 8): 936-943, 2018 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-30080169

RESUMO

Caesium manganese hexahydrate phosphate, CsMn(H2O)6(PO4), was synthesized under hydrothermal conditions. Its crystal structure was determined from single-crystal X-ray diffraction data. The novel phase crystallizes in the hexagonal space group P63mc and represents the first manganese member in the struvite morphotropic series, AM(H2O)6(TO4). Its crystal structure is built from Mn(H2O)6 octahedra and PO4 tetrahedra linked into a framework via hydrogen bonding. The large Cs atoms are encapsulated in the framework cuboctahedral cavities. It is shown that the size of the A+ ionic radius within the morphotropic series AM(H2O)6(XO4) results is certain types of crystal structures and affects the values of the unit-cell parameters. Structural relationships with Na(H2O)Mg(H2O)6(PO4) and the mineral hazenite, KNa(H2O)2Mg2(H2O)12(PO4)2, are discussed.

18.
Inorg Chem ; 57(12): 6799-6802, 2018 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-29877690

RESUMO

The bismuth(III) oxophosphate Bi3(PO4)O3 was obtained by hydrothermal synthesis. The unit cell has a = 5.6840(6) Å, b = 7.0334(7) Å, c = 9.1578(9) Å, α = 78.958(2)°, ß = 77.858(2)°, γ = 68.992(2)°, V = 331.41(6) Å3, space group P1̅, and Z = 2. The crystal chemical formula that reflects the presence of oxo-centered tetrahedra and triangles is 2D[OIIIOIV2Bi3](PO4). The crystal structure contains [O3Bi3]3+∞∞-heteropolyhedral corrugated layers parallel to (001), which alternate along [001] with isolated (PO4) tetrahedra. The structural complexity parameters are v = 22 atoms, IG = 3.459 bits/atoms, and IG,total = 76.107 bits/unit cell, and thus Bi3(PO4)O3 is the simplest pure bismuth(III) oxophosphate.

19.
Acta Crystallogr C Struct Chem ; 74(Pt 5): 641-649, 2018 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-29726476

RESUMO

Rubidium tetramanganese tris(phosphate), RbMn4(PO4)3, has been synthesized as single crystals under hydrothermal conditions. The crystal structure was refined in the space group Pnnm (D2h12). It is argued that the size factor RM/RA, i.e. the ratio of the A+ ionic radius to the M2+ ionic radius, within the morphotropic series AM4(TO4)3 corresponds to a specific type of crystal structure. At low temperatures, the antiferromagnet superimposed on a buckled kagomé network in RbMn4(PO4)3 experiences a transition into a long-range ordered state with finite spontaneous magnetization. First principles calculations provide the dominant magnetic exchange interactions both within and between the kagomé layers. The analysis of these interactions allows us to suggest a model of alternating ferromagnetic and antiferromagnetic arrangements within chains of Mn3 atoms.

20.
Dalton Trans ; 46(26): 8680-8686, 2017 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-28650503

RESUMO

The manganese end member of triplite-triploidite series of compounds, Mn2(PO4)OH, is synthesized by a hydrothermal method. Its crystal structure is refined in the space group P21/c with a = 12.411(1) Å, b = 13.323(1) Å, c = 10.014(1) Å, ß = 108.16(1), V = 1573.3 Å3, Z = 8, and R = 0.0375. Evidenced in measurements of magnetization M and specific heat Cp, Mn2(PO4)OH reaches a long range antiferromagnetic order at TN = 4.6 K. As opposed to both triplite Mn2(PO4)F and triploidite-type Co2(PO4)F, the title compound is magnetically frustrated being characterized by the ratio of Curie-Weiss temperature Θ to Néel temperature TN of about 20. The large value of frustration strength |Θ|/TN stems from the twisted saw tooth chain geometry of corner sharing triangles of Mn polyhedra, which may be isolated within tubular fragments of a triploidite crystal structure.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA