Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Methods Cell Biol ; 181: 59-72, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38302244

RESUMO

Cellular senescence, whereby cells cease to proliferate, is known to contribute to the aging process and age-related pathologies. It is elicited either by cell-intrinsic mechanisms such as progressive telomere shortening or due to the extrinsic stress-related factors, which via p53-p21 and p16-pRB tumor suppressor pathways signal cells to cease proliferation. A proper identification and characterization of senescent cells is necessary to understand the process of aging, age-related pathologies, and the development of therapeutics to treat age-related dysfunctions. The landmark discovery of Senescence-Associated-Beta-Galactosidase (SA-ß-Gal) marker, and a simple colorimetric method to detect SA-ß-Gal greatly facilitated identification of the senescent cells in human and rodent cells pertaining to age-related diseases (Dimri et al., 1995). Despite the availability of additional senescence biomarkers, the SA-ß-Gal marker and histochemical detection method remain the most widely used tool to identify senescent cells in vitro and in vivo. Here, we revisit the original colorimetric method to detect senescent cells that was first published in 1995 (Dimri et al., 1995).


Assuntos
Senescência Celular , Colorimetria , Humanos , Senescência Celular/genética , Envelhecimento/metabolismo , Biomarcadores/metabolismo , Transdução de Sinais
2.
Pathogens ; 8(3)2019 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-31487807

RESUMO

Human immunodeficiency virus-1 (HIV-1) has the ability to infect latently at the level of individual CD4+ cells. Latent HIV-1 proviruses are transcriptionally silent and immunologically inert, but are still capable of reactivating productive lytic infection following cellular activation. These latent viruses are the main obstacle in the eradication of HIV-1, because current HIV-1 treatment regimens are ineffective against them. Normal immunological response against an antigen activates CD4+ naïve T cells. The activated CD4+ naïve T cells undergo cell cycle, resulting in further transformation and profound proliferation to form effector CD4+ T-cells. Notably, in HIV-1 infected individuals, some of the effector CD4+ T cells get infected with HIV-1. Upon fulfillment of their effector functions, almost all activated CD4+ T cells are committed to apoptosis or programmed cell death, but a miniscule fraction revert to quiescence and become resting memory CD4+ T cells to mediate a rapid immunological response against the same antigen in the future. However, due to the quiescent nature of the resting memory T cells, the integrated HIV-1 becomes transcriptionally silent and acquires a latent phenotype. Following re-exposure to the same antigen, memory cells and integrated HIV-1 are stimulated. The reactivated latent HIV provirus subsequently proceeds through its life cycle and eventually leads to the production of new viral progeny. Recently, many strategies against HIV-1 latency have been developed and some of them have even matured to the clinical level, but none can yet effectively eliminate the latent HIV reservoir, which remains a barrier to HIV-1 cure. Therefore, alternative strategies to eradicate latent HIV need to be considered. This review provides vital knowledge on HIV latency and on strategies to supplement highly active anti-retroviral therapy (HAART) with cytokine-mediated therapeutics for dislodging the latent HIV reservoirs in order to open up new avenues for curing HIV.

3.
Mol Carcinog ; 57(7): 831-841, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29528145

RESUMO

Polycomb group (PcG) protein BMI1 is an important regulator of oncogenic phenotype and is often overexpressed in several human malignancies including breast cancer. Aberrant expression of BMI1 is associated with metastasis and poor prognosis in cancer patients. At present, therapy reagents that can efficiently inhibit the expression of BMI1 are not very well known. Here, we report that Timosaponin A-III (TA-III), a steroidal saponin obtained from the rhizomes of an herb, Anemarrhena asphodeloides, strongly inhibits expression of BMI1 in breast cancer cells. Treatment of breast cancer cells with TA-III resulted in inhibition of oncogenic phenotypes such as proliferation, migration and invasion, and induction of cellular senescence. Inhibition of these oncogenic phenotypes was accompanied by downregulation of BMI1 expression and histone posttranslational modification activity of PRC1. The mechanistic analysis of TA-III-induced inhibition of oncogenic activity and BMI1 expression suggests that downregulation of c-Myc mediates TA-III effect on BMI1. We further show that exogenous BMI1 overexpression can overcome TA-III-induced inhibition of oncogenic phenotypes. We also show that TA-III induces expression of tumor suppressive miR-200c and miR-141, which are negatively regulated by BMI1. In summary, our data suggest that TA-III is a potent inhibitor of BMI1 and that it can be successfully used to inhibit the growth of tumors where PcG protein BMI1 and PcG activities are upregulated.


Assuntos
Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/genética , Carcinogênese/efeitos dos fármacos , Complexo Repressor Polycomb 1/genética , Proteínas do Grupo Polycomb/genética , Saponinas/farmacologia , Esteroides/farmacologia , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Movimento Celular/genética , Proliferação de Células/efeitos dos fármacos , Proliferação de Células/genética , Senescência Celular/efeitos dos fármacos , Senescência Celular/genética , Regulação para Baixo/efeitos dos fármacos , Regulação para Baixo/genética , Feminino , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/genética , Humanos , Células MCF-7 , MicroRNAs/genética , Oncogenes/genética , Fenótipo , Processamento de Proteína Pós-Traducional/efeitos dos fármacos , Processamento de Proteína Pós-Traducional/genética
4.
Oncotarget ; 7(24): 36220-36234, 2016 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-27105531

RESUMO

MicroRNAs (miRNAs) are known to function as oncomiRs or tumor suppressors and are important noncoding RNA regulators of oncogenesis. The miR-200c/141 locus on chromosome 12 encodes miR-200c and miR-141, two members of the miR-200 family, which have been shown to function as tumor suppressive miRNAs by targeting multiple oncogenic factors such as polycomb group protein BMI1. Here, we show that BMI1 reciprocally functions as a transcriptional repressor of the miR-200c/141 cluster and that BMI1 inhibitors upregulate expression of miR-200c and miR-141. Our data suggest that BMI1 binds to the miR-200c/141 promoter and regulates it through transcription factor binding motifs E-box 2 and Z-box 1 to repress expression of miR-200c/141 cluster. We also show that PTC-209, a small molecule inhibitor of BMI1 gene expression induces cellular senescence and transcriptionally upregulates expression of miR-200c/141 cluster in breast cancer cells. Furthermore, inhibition of expression of miR-200c or miR-141 overcomes tumor suppressive effects of PTC-209 including induction of cellular senescence and downregulation of breast cancer stem cell phenotype. Therefore, our studies suggest a reciprocal regulation between BMI1 and miR-200c/141 cluster, and that BMI1 inhibitory drugs can further amplify their inhibitory effects on BMI1 via multiple mechanisms including posttranscriptional regulation by upregulating BMI1 targeting miRNAs.


Assuntos
Regulação Neoplásica da Expressão Gênica/genética , MicroRNAs/genética , Complexo Repressor Polycomb 1/genética , Linhagem Celular , Linhagem Celular Tumoral , Senescência Celular/efeitos dos fármacos , Senescência Celular/genética , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Células HEK293 , Compostos Heterocíclicos com 2 Anéis/farmacologia , Humanos , Células MCF-7 , Neoplasias/genética , Neoplasias/metabolismo , Neoplasias/patologia , Células-Tronco Neoplásicas/efeitos dos fármacos , Células-Tronco Neoplásicas/metabolismo , Complexo Repressor Polycomb 1/metabolismo , Regiões Promotoras Genéticas/genética , Ligação Proteica , Tiazóis/farmacologia
5.
J Biol Chem ; 290(16): 10555-67, 2015 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-25737447

RESUMO

MicroRNAs (miRNAs) have emerged as important regulators of tumorigenesis. Several miRNAs, which can function either as oncomiRs or tumor suppressive miRs are deregulated in cancer cells. The microRNA-31 (miR-31) has been shown to be overexpressed in metastatic breast cancer. It promotes multiple oncogenic phenotypes, including proliferation, motility, and invasion of cancer cells. Using a breast cancer-related miRNA array analysis, we identified miR-31 as a novel target of histone deacetylase inhibitors (HDACi) in breast cancer cells. Specifically, we show that sodium butyrate (NaB) and panobinostat (LBH589), two broad-spectrum HDAC inhibitors up-regulate hsa-miR-31 (miR-31). The up-regulation of miR-31 was accompanied by repression of the polycomb group (PcG) protein BMI1 and induction of cellular senescence. We further show that inhibition of miR-31 overcomes the senescence-inducing effect of HDACi, and restores expression of the PcG protein BMI1. Interestingly, BMI1 also acts as a repressor of miR-31 transcription, suggesting a cross-negative feedback loop between the expression of miR-31 and BMI1. Our data suggest that miR-31 is an important physiological target of HDACi, and that it is an important regulator of senescence relevant to cancer. These studies further suggest that manipulation of miR-31 expression can be used to modulate senescence-related pathological conditions such as cancer, and the aging process.


Assuntos
Ácido Butírico/farmacologia , Senescência Celular/genética , Regulação Neoplásica da Expressão Gênica , Inibidores de Histona Desacetilases/farmacologia , Ácidos Hidroxâmicos/farmacologia , Indóis/farmacologia , MicroRNAs/genética , Apoptose , Linhagem Celular Tumoral , Senescência Celular/efeitos dos fármacos , Retroalimentação Fisiológica , Feminino , Humanos , Células MCF-7 , MicroRNAs/agonistas , MicroRNAs/metabolismo , Análise em Microsséries , Análise de Sequência com Séries de Oligonucleotídeos , Panobinostat , Complexo Repressor Polycomb 1/antagonistas & inibidores , Complexo Repressor Polycomb 1/genética , Complexo Repressor Polycomb 1/metabolismo , Transdução de Sinais , Transcrição Gênica
6.
J Biol Chem ; 290(5): 3033-44, 2015 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-25505268

RESUMO

The polycomb group protein BMI1 is an important regulator of cancer stem cell (CSC) phenotype and is often overexpressed in cancer cells. Its overexpression leads to increase in CSC fraction and therapy resistance in tumors. BMI1 functions via polycomb repressive complex 1 (PRC1)-mediated gene silencing and also via PRC1-independent transcriptional activities. At present, very little is known about the therapy reagents that can efficiently inhibit BMI1 expression, and the CSC phenotype. Here, we report that the polo-like kinase 1 (PLK1) regulates BMI1 expression, and that its inhibition can efficiently down-regulate BMI1 expression and PRC1 activity, and induce premature senescence in breast cancer cells. We also show that the exogenous BMI1 overexpression mitigates anti-oncogenic effects of PLK1 inhibition and overcomes senescence induction by PLK1 inhibitors. We further show that PLK1 inhibition down-regulates BMI1 by upregulating the miRNA-200c/141 cluster, which encodes miR-200c and miR-141, both of which are known to post-transcriptionally downregulate BMI1 expression. Thus, our data suggest that PLK1 inhibitors can be successfully used to inhibit growth of tumors in which PcG protein BMI1 is overexpressed or the PRC1 activity is deregulated.


Assuntos
Proteínas de Ciclo Celular/metabolismo , MicroRNAs/metabolismo , Complexo Repressor Polycomb 1/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Western Blotting , Proteínas de Ciclo Celular/genética , Linhagem Celular Tumoral , Feminino , Humanos , MicroRNAs/genética , Complexo Repressor Polycomb 1/genética , Ligação Proteica , Proteínas Serina-Treonina Quinases/genética , Proteínas Proto-Oncogênicas/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Quinase 1 Polo-Like
7.
Cell Cycle ; 12(22): 3537-46, 2013 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-24091627

RESUMO

Polycomb group protein BMI1 is an important regulator of senescence, aging, and cancer. On one hand, it is overexpressed in cancer cells and is required for self-renewal of stem cells. On the other hand, it is downregulated during senescence and aging. MicroRNAs have emerged as major regulators of almost every gene associated with cancer, aging, and related pathologies. At present, very little is known about the miRNAs that regulate the expression of BMI1. Here, we report that miR-141 posttranscriptionally downregulates BMI1 expression in human diploid fibroblasts (HDFs) via a miR-141 targeting sequence in the 3' untranslated region of BMI1 mRNA. We also show that overexpression of miR-141 induces premature senescence in HDFs via targeting of BMI1 in normal but not in exogenous BMI1-overexpressing HDFs. Induction of premature senescence in HDFs was accompanied by upregulation of p16INK4a, an important downstream target of BMI1 and a major regulator of senescence. Our results suggest that miR-141-based therapies could be developed to treat pathologies where BMI1 is deregulated.


Assuntos
Senescência Celular/genética , Fibroblastos/fisiologia , MicroRNAs/metabolismo , Complexo Repressor Polycomb 1/metabolismo , Linhagem Celular , Inibidor p16 de Quinase Dependente de Ciclina/genética , Inibidor p16 de Quinase Dependente de Ciclina/metabolismo , Diploide , Regulação para Baixo , Humanos , MicroRNAs/genética , Complexo Repressor Polycomb 1/genética , Proteína do Retinoblastoma/metabolismo , Transdução de Sinais , Regulação para Cima
8.
PLoS One ; 8(4): e61757, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23637902

RESUMO

The non-receptor tyrosine kinase Src and receptor tyrosine kinase epidermal growth factor receptor (EGFR/ErbB1) have been established as collaborators in cellular signaling and their combined dysregulation plays key roles in human cancers, including breast cancer. In part due to the complexity of the biochemical network associated with the regulation of these proteins as well as their cellular functions, the role of Src in EGFR regulation remains unclear. Herein we present a new comprehensive, multi-scale dynamical model of ErbB receptor signal transduction in human mammary epithelial cells. This model, constructed manually from published biochemical literature, consists of 245 nodes representing proteins and their post-translational modifications sites, and over 1,000 biochemical interactions. Using computer simulations of the model, we find it is able to reproduce a number of cellular phenomena. Furthermore, the model predicts that overexpression of Src results in increased endocytosis of EGFR in the absence/low amount of the epidermal growth factor (EGF). Our subsequent laboratory experiments also suggest increased internalization of EGFR upon Src overexpression under EGF-deprived conditions, further supporting this model-generated hypothesis.


Assuntos
Mama/metabolismo , Células Epiteliais/metabolismo , Receptores ErbB/fisiologia , Modelos Biológicos , Transdução de Sinais/fisiologia , Quinases da Família src/metabolismo , Simulação por Computador , Endocitose/fisiologia , Fator de Crescimento Epidérmico/metabolismo , Receptores ErbB/efeitos dos fármacos , Feminino , Humanos , Processamento de Proteína Pós-Traducional
9.
J Biol Chem ; 288(5): 3406-18, 2013 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-23239878

RESUMO

Polycomb group protein BMI1 plays an important role in cellular homeostasis by maintaining a balance between proliferation and senescence. It is often overexpressed in cancer cells and is required for self-renewal of stem cells. At present, very little is known about the signaling pathways that regulate the expression of BMI1. Here, we report that BMI1 autoactivates its own promoter via an E-box present in its promoter. We show that BMI1 acts as an activator of the WNT pathway by repressing Dickkopf (DKK) family of WNT inhibitors. BMI1 mediated repression of DKK proteins; in particular, DKK1 led to up-regulation of WNT target c-Myc, which in turn further led to transcriptional autoactivation of BMI1. Thus, a positive feedback loop connected by the WNT signaling pathway regulates BMI1 expression. This positive feedback loop regulating BMI1 expression may be relevant to the role of BMI1 in promoting cancer and maintaining stem cell phenotype.


Assuntos
Retroalimentação Fisiológica , Regulação Neoplásica da Expressão Gênica , Complexo Repressor Polycomb 1/genética , Proteínas do Grupo Polycomb/genética , Via de Sinalização Wnt , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Linhagem Celular , Feminino , Humanos , Peptídeos e Proteínas de Sinalização Intercelular/genética , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Modelos Biológicos , Células-Tronco Neoplásicas/metabolismo , Células-Tronco Neoplásicas/patologia , Fenótipo , Complexo Repressor Polycomb 1/metabolismo , Proteínas do Grupo Polycomb/metabolismo , Regiões Promotoras Genéticas/genética , Ligação Proteica/genética , Proteínas Proto-Oncogênicas c-myc/genética , Proteínas Proto-Oncogênicas c-myc/metabolismo , Transcrição Gênica , Regulação para Cima/genética , Via de Sinalização Wnt/genética
10.
J Carcinog ; 10: 29, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-22190871

RESUMO

BACKGROUND: Well over a quarter of human breast cancers are ErbB2-driven and constitute a distinct subtype with substantially poorer prognosis. Yet, there are substantial gaps in our understanding of how ErbB2 tyrosine kinase activity unleashes a coordinated program of cellular and extracellular alterations that culminate in aggressive breast cancers. Cellular models that exhibit ErbB2 kinase dependency and can induce metastatic breast cancer in immune competent hosts are likely to help bridge this gap. MATERIALS AND METHODS: Here, we derived and characterized a cell line model obtained from a transgenic ErbB2/Neu-driven mouse mammary adenocarcinoma. RESULTS: The MPPS1 cell line produces metastatic breast cancers when implanted in the mammary fat pads of immune-compromised as well as syngeneic immune-competent hosts. MPPS1 cells maintain high ErbB2 overexpression when propagated in DFCI-1 or related media, and their growth is ErbB2-dependent, as demonstrated by concentration-dependent inhibition of proliferation with the ErbB kinase inhibitor Lapatinib. When grown in 3-dimensional (3-D) culture on Matrigel, MPPS1 cells predominantly form large irregular cystic and solid structures. Remarkably, low concentrations of Lapatinib led to a switch to regular acinar growth on Matrigel. Immunofluorescence staining of control vs. Lapatinib-treated acini for markers of epithelial polarity revealed that inhibition of ErbB2 signaling led to rapid resumption of normal mammary epithelium-like cell polarity. CONCLUSIONS: The strict dependence of the MPPS1 cell system on ErbB2 signals for proliferation and alterations in cell polarity should allow its use to dissect ErbB2 kinase-dependent signaling pathways that promote loss of cell polarity, a key component of the epithelial mesenchymal transition and aggressiveness of ErbB2-driven breast cancers.

11.
Cell Cycle ; 10(8): 1322-30, 2011 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-21430439

RESUMO

The polycomb group protein BMI1 has been linked to proliferation, senescence, cancer progression and stem cell phenotype. At present, very little is known about its regulation. Here, we report that BMI1 contains a functional recognition motif for the F box protein ßTrCP, which regulates ubiquitination and proteasome-mediated degradation of various proteins. We show that overexpression of wild-type ßTrCP but not the ΔF mutant of it promotes BMI1 ubiquitination and degradation, and knockdown of ßTrCP results in increased expression of BMI1. Furthermore, a mutant of BMI1 with an altered ßTrCP recognition motif is much more stable than wild-type BMI1. We also show that wild-type BMI1 but not the mutant BMI1 interacts with ßTrCP. Accordingly, compared to wild-type BMI1, mutant protein exhibited increased pro-oncogenic activity. In summary, our findings suggest that ßTrCP regulates turnover of BMI1 and its function relevant to oncogenesis, cellular senescence and aging.


Assuntos
Fibroblastos/metabolismo , Proteínas Nucleares/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Proteínas Repressoras/metabolismo , Proteínas Contendo Repetições de beta-Transducina/metabolismo , Linhagem Celular Tumoral , Senescência Celular/genética , Feminino , Fibroblastos/citologia , Expressão Gênica , Inativação Gênica , Humanos , Mutação , Proteínas Nucleares/genética , Complexo Repressor Polycomb 1 , Complexo de Endopeptidases do Proteassoma/metabolismo , Ligação Proteica/genética , Domínios e Motivos de Interação entre Proteínas/genética , Estabilidade Proteica , Proteínas Proto-Oncogênicas/genética , RNA Interferente Pequeno , Proteínas Repressoras/genética , Retroviridae , Transfecção , Ubiquitinação , Proteínas Contendo Repetições de beta-Transducina/antagonistas & inibidores , Proteínas Contendo Repetições de beta-Transducina/genética
12.
J Biol Chem ; 286(1): 620-33, 2011 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-20940296

RESUMO

The E3 ubiquitin ligase Casitas B lymphoma protein (Cbl) controls the ubiquitin-dependent degradation of EGF receptor (EGFR), but its role in regulating downstream signaling elements with which it associates and its impact on biological outcomes of EGFR signaling are less clear. Here, we demonstrate that stimulation of EGFR on human mammary epithelial cells disrupts adherens junctions (AJs) through Vav2 and Rac1/Cdc42 activation. In EGF-stimulated cells, Cbl regulates the levels of phosphorylated Vav2 thereby attenuating Rac1/Cdc42 activity. Knockdown of Cbl and Cbl-b enhanced the EGF-induced disruption of AJs and cell motility. Overexpression of constitutively active Vav2 activated Rac1/Cdc42 and reorganized junctional actin cytoskeleton; these effects were suppressed by WT Cbl and enhanced by a ubiquitin ligase-deficient Cbl mutant. Cbl forms a complex with phospho-EGFR and phospho-Vav2 and facilitates phospho-Vav2 ubiquitinylation. Cbl can also interact with Vav2 directly in a Cbl Tyr-700-dependent manner. A ubiquitin ligase-deficient Cbl mutant enhanced the morphological transformation of mammary epithelial cells induced by constitutively active Vav2; this effect requires an intact Cbl Tyr-700. These results indicate that Cbl ubiquitin ligase plays a critical role in the maintenance of AJs and suppression of cell migration through down-regulation of EGFR-Vav2 signaling.


Assuntos
Junções Aderentes/metabolismo , Movimento Celular , Células Epiteliais/metabolismo , Receptores ErbB/metabolismo , Proteínas Proto-Oncogênicas c-cbl/metabolismo , Proteínas Proto-Oncogênicas c-vav/metabolismo , Transdução de Sinais , Actinas/metabolismo , Junções Aderentes/efeitos dos fármacos , Sequência de Aminoácidos , Animais , Adesão Celular/efeitos dos fármacos , Linhagem Celular , Movimento Celular/efeitos dos fármacos , Citoesqueleto/efeitos dos fármacos , Citoesqueleto/metabolismo , Ativação Enzimática/efeitos dos fármacos , Fator de Crescimento Epidérmico/farmacologia , Células Epiteliais/citologia , Células Epiteliais/efeitos dos fármacos , Humanos , Camundongos , Dados de Sequência Molecular , Mutação , Fosforilação/efeitos dos fármacos , Transporte Proteico/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-cbl/deficiência , Proteínas Proto-Oncogênicas c-cbl/genética , Proteínas Proto-Oncogênicas c-vav/química , Transdução de Sinais/efeitos dos fármacos , Ubiquitinação/efeitos dos fármacos , Ubiquitinação/genética , Proteína cdc42 de Ligação ao GTP/metabolismo , Proteínas rac1 de Ligação ao GTP/metabolismo
13.
Proc Natl Acad Sci U S A ; 107(37): 16107-12, 2010 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-20805499

RESUMO

Active Src localization at focal adhesions (FAs) is essential for cell migration. How this pool is linked mechanistically to the large pool of Src at late endosomes (LEs)/lysosomes (LY) is not well understood. Here, we used inducible Tsg101 gene deletion, TSG101 knockdown, and dominant-negative VPS4 expression to demonstrate that the localization of activated cellular Src and viral Src at FAs requires the endosomal-sorting complexes required for transport (ESCRT) pathway. Tsg101 deletion also led to impaired Src-dependent activation of STAT3 and focal adhesion kinase and reduced cell migration. Impairment of the ESCRT pathway or Rab7 function led to the accumulation of active Src at aberrant LE/LY compartments followed by its loss. Analyses using fluorescence recovery after photo-bleaching show that dynamic mobility of Src in endosomes is ESCRT pathway-dependent. These results reveal a critical role for an ESCRT pathway-dependent LE/LY trafficking step in Src function by promoting localization of active Src to FAs.


Assuntos
Complexos Endossomais de Distribuição Requeridos para Transporte/metabolismo , Endossomos/metabolismo , Quinases da Família src/metabolismo , Animais , Adesão Celular , Movimento Celular , Células Cultivadas , Proteínas de Ligação a DNA/metabolismo , Humanos , Lisossomos/metabolismo , Camundongos , Transporte Proteico , Fatores de Transcrição/metabolismo , Quinases da Família src/genética
14.
Mol Cancer ; 9: 158, 2010 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-20569464

RESUMO

BACKGROUND: The polycomb group (PcG) protein BMI1 is an important regulator of development. Additionally, aberrant expression of BMI1 has been linked to cancer stem cell phenotype and oncogenesis. In particular, its overexpression has been found in several human malignancies including breast cancer. Despite its established role in stem cell maintenance, cancer and development, at present not much is known about the functional domains of BMI1 oncoprotein. In the present study, we carried out a deletion analysis of BMI1 to identify its negative regulatory domain. RESULTS: We report that deletion of the C-terminal domain of BMI1, which is rich in proline-serine (PS) residues and previously described as PEST-like domain, increased the stability of BMI1, and promoted its pro-oncogenic activities in human mammary epithelial cells (HMECs). Specifically, overexpression of a PS region deleted mutant of BMI1 increased proliferation of HMECs and promoted an epithelial-mesenchymal transition (EMT) phenotype in the HMECs. Furthermore, when compared to the wild type BMI1, exogenous expression of the mutant BMI1 led to a significant downregulation of p16INK4a and an efficient bypass of cellular senescence in human diploid fibroblasts. CONCLUSIONS: In summary, our data suggest that the PS domain of BMI1 is involved in its stability and that it negatively regulates function of BMI1 oncoprotein. Our results also suggest that the PS domain of BMI1 could be targeted for the treatment of proliferative disorders such as cancer and aging.


Assuntos
Proteínas Nucleares/genética , Proteínas Proto-Oncogênicas/genética , Sequências Reguladoras de Ácido Nucleico , Proteínas Repressoras/genética , Linhagem Celular , Transição Epitelial-Mesenquimal , Meia-Vida , Humanos , Proteínas Nucleares/química , Proteínas Nucleares/fisiologia , Complexo Repressor Polycomb 1 , Proteínas Proto-Oncogênicas/química , Proteínas Proto-Oncogênicas/fisiologia , Proteínas Repressoras/química , Proteínas Repressoras/fisiologia , Deleção de Sequência
15.
Cell Cycle ; 9(13): 2663-73, 2010 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-20543557

RESUMO

Polycomb group (PcG) proteins are overexpressed in several human malignancies including breast cancer. In particular, aberrant expression of BMI1 and EZH2 has been linked to metastasis and poor prognosis in cancer patients. At present, very little is known about the pharmacological inhibitors of PcG proteins. Here we show that histone deacetylase inhibitors (HDACi) downregulate expression of BMI1. Treatment of MCF10A cells, which are immortal non-transformed breast epithelial cells, and breast cancer cells with HDACi led to decreased expression of BMI1. We further show that downregulation of BMI1 by HDACi results due to the transcriptional downregulation of BMI1 gene. Specifically, we show that primary transcription and promoter activity of BMI1 is suppressed upon treatment with HDACi. Furthermore, downregulation of BMI1 was accompanied by a decrease in histone 2A lysine 119 ubiquitination (H2AK119Ub), which is catalyzed by BMI1 containing polycomb repressive complex 1. HDACi treatment also led to derepression of growth inhibitory genes and putative tumor suppressors, which are known to be silenced by PcG proteins and polycomb repressive complexes (PRCs). In summary, our findings suggest that BMI1 is an important therapy target of HDACi, and that HDACi can be used alone or in combination with other therapies to inhibit growth of tumors that overexpress PcG proteins such as BMI1.


Assuntos
Inibidores de Histona Desacetilases/farmacologia , Proteínas Nucleares/genética , Proteínas Proto-Oncogênicas/genética , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Transcrição Gênica , Apoptose/efeitos dos fármacos , Mama/citologia , Linhagem Celular Tumoral , Senescência Celular/efeitos dos fármacos , Proteínas de Ligação a DNA/metabolismo , Regulação para Baixo/efeitos dos fármacos , Proteína Potenciadora do Homólogo 2 de Zeste , Células Epiteliais/citologia , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/metabolismo , Feminino , Histonas/metabolismo , Humanos , Lisina/metabolismo , Metilação/efeitos dos fármacos , Proteínas Nucleares/metabolismo , Complexo Repressor Polycomb 1 , Complexo Repressor Polycomb 2 , Proteínas do Grupo Polycomb , Proteínas Proto-Oncogênicas/metabolismo , Proteínas Proto-Oncogênicas c-myc/metabolismo , Fatores de Transcrição/metabolismo , Transcrição Gênica/efeitos dos fármacos , Ubiquitinação/efeitos dos fármacos
16.
J Biol Chem ; 285(2): 1555-68, 2010 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-19826000

RESUMO

Non-malignant mammary epithelial cells (MECs) undergo acinar morphogenesis in three-dimensional Matrigel culture, a trait that is lost upon oncogenic transformation. Rho GTPases are thought to play important roles in regulating epithelial cell-cell junctions, but their contributions to acinar morphogenesis remain unclear. Here we report that the activity of Rho GTPases is down-regulated in non-malignant MECs in three-dimensional culture with particular suppression of Rac1 and Cdc42. Inducible expression of a constitutively active form of Vav2, a Rho GTPase guanine nucleotide exchange factor activated by receptor tyrosine kinases, in three-dimensional MEC culture activated Rac1 and Cdc42; Vav2 induction from early stages of culture impaired acinar morphogenesis, and induction in preformed acini disrupted the pre-established acinar architecture and led to cellular outgrowths. Knockdown studies demonstrated that Rac1 and Cdc42 mediate the constitutively active Vav2 phenotype, whereas in contrast, RhoA knockdown intensified the Vav2-induced disruption of acini, leading to more aggressive cell outgrowth and branching morphogenesis. These results indicate that RhoA plays an antagonistic role to Rac1/Cdc42 in the control of mammary epithelial acinar morphogenesis.


Assuntos
Glândulas Mamárias Humanas/crescimento & desenvolvimento , Morfogênese/fisiologia , Proteínas Proto-Oncogênicas c-vav/metabolismo , Proteína cdc42 de Ligação ao GTP/metabolismo , Proteínas rac1 de Ligação ao GTP/metabolismo , Proteína rhoA de Ligação ao GTP/metabolismo , Linhagem Celular Transformada , Feminino , Humanos , Glândulas Mamárias Humanas/citologia , Proteínas Proto-Oncogênicas c-vav/genética , Proteína cdc42 de Ligação ao GTP/genética , Proteínas rac1 de Ligação ao GTP/genética , Proteína rhoA de Ligação ao GTP/genética
17.
Carcinogenesis ; 31(3): 489-95, 2010 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-19969553

RESUMO

The polycomb group (PcG) protein, enhancer of zeste homologue 2 (EZH2), is overexpressed in several human malignancies including breast cancer. Aberrant expression of EZH2 has been associated with metastasis and poor prognosis in cancer patients. Despite the clear role of EZH2 in oncogenesis and therapy failure, not much is known about chemotherapeutics and chemopreventive agents that can suppress its expression and activity. Here, we show that dietary omega-3 (omega-3) polyunsaturated fatty acids (PUFAs) can regulate the expression of EZH2 in breast cancer cells. The treatment of breast cancer cells with omega-3 PUFAs, but not omega-6 PUFAs, led to downregulation of EZH2. Studies using proteosome inhibitor MG132 suggested that omega-3 PUFAs induce degradation of the PcG protein EZH2 through posttranslational mechanisms. Furthermore, downregulation of EZH2 by omega-3 PUFAs was accompanied by a decrease in histone 3 lysine 27 trimethylation (H3K27me3) activity of EZH2 and upregulation of E-cadherin and insulin-like growth factor binding protein 3, which are known targets of EZH2. Treatment with omega-3 PUFAs also led to decrease in invasion of breast cancer cells, an oncogenic phenotype that is known to be associated with EZH2. Thus, our studies suggest that the PcG protein EZH2 is an important target of omega-3 PUFAs and that downregulation of EZH2 may be involved in the mediation of anti-oncogenic and chemopreventive effects of omega-3 PUFAs.


Assuntos
Anticarcinógenos/farmacologia , Ácido Araquidônico/farmacologia , Neoplasias da Mama/patologia , Proteínas de Ligação a DNA/biossíntese , Gorduras na Dieta/farmacologia , Ácidos Docosa-Hexaenoicos/farmacologia , Ácido Eicosapentaenoico/farmacologia , Ácido Linoleico/farmacologia , Proteínas de Neoplasias/biossíntese , Fatores de Transcrição/biossíntese , Caderinas/biossíntese , Caderinas/genética , Linhagem Celular Tumoral/efeitos dos fármacos , Linhagem Celular Tumoral/metabolismo , Proteínas de Ligação a DNA/genética , Regulação para Baixo/efeitos dos fármacos , Proteína Potenciadora do Homólogo 2 de Zeste , Feminino , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Histonas/metabolismo , Humanos , Proteína 3 de Ligação a Fator de Crescimento Semelhante à Insulina , Proteínas de Ligação a Fator de Crescimento Semelhante a Insulina/biossíntese , Proteínas de Ligação a Fator de Crescimento Semelhante a Insulina/genética , Metilação/efeitos dos fármacos , Invasividade Neoplásica , Proteínas de Neoplasias/genética , Complexo Repressor Polycomb 2 , Complexo de Endopeptidases do Proteassoma/metabolismo , Processamento de Proteína Pós-Traducional/efeitos dos fármacos , Fatores de Transcrição/genética
18.
Cancer Biol Ther ; 7(10): 1630-40, 2008 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-18769124

RESUMO

ErbB2 (or Her2/Neu) overexpression in breast cancer signifies poorer prognosis, yet it has provided an avenue for targeted therapy as demonstrated by the success of the humanized monoclonal antibody Trastuzumab (Herceptin). Resistance to Trastuzumab and eventual failure in most cases, however, necessitate alternate ErbB2-targeted therapies. HSP90 inhibitors such as 17-allylaminodemethoxygeldanamycin (17-AAG), potently downregulate the cell surface ErbB2. While the precise mechanisms of Trastuzumab or 17-AAG action remain unclear, ubiquitinylation-dependent proteasomal or lysosomal degradation of ErbB2 appears to play a substantial role. As Trastuzumab and 17-AAG induce the recruitment of distinct E3 ubiquitin ligases, Cbl and CHIP respectively, to ErbB2, we hypothesized that 17-AAG and Trastuzumab combination could induce a higher level of ubiquitinylation and downregulation of ErbB2 as compared to single drug treatments. We present biochemical and cell biological evidence that combined 17-AAG and Trastuzumab treatment of ErbB2-overexpressing breast cancer cell lines leads to enhanced ubiquitinylation, downregulation from the cell surface and lysosomal degradation of ErbB2. Importantly, combined 17-AAG and Trastuzumab treatment induced synergistic growth arrest and cell death specifically in ErbB2-overexpressing but not in ErbB2-low breast cancer cells. Our results suggest the 17-AAG and Trastuzumab combination as a mechanism-based combinatorial targeted therapy for ErbB2-overexpressing breast cancer patients.


Assuntos
Anticorpos Monoclonais/administração & dosagem , Benzoquinonas/administração & dosagem , Neoplasias da Mama/metabolismo , Lactamas Macrocíclicas/administração & dosagem , Lisossomos/metabolismo , Receptor ErbB-2/metabolismo , Ubiquitina/química , Anticorpos Monoclonais Humanizados , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Morte Celular , Linhagem Celular Tumoral , Citometria de Fluxo , Proteínas de Choque Térmico HSP90/metabolismo , Humanos , Microscopia de Fluorescência , Modelos Biológicos , Estrutura Terciária de Proteína , Trastuzumab
19.
Cancer Res ; 67(24): 11789-97, 2007 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-18089809

RESUMO

We have previously shown that evolutionarily conserved alteration/deficiency in activation (Ada) protein associates with and promotes estrogen receptor (ER)-mediated target gene expression. Here, we examined the role of endogenous Ada3 to recruit histone acetyl transferases (HAT) to an ER-responsive promoter and its role in estrogen-dependent cell proliferation and malignant phenotype. Using a combination of glycerol gradient cosedimentation and immunoprecipitation analyses, we show that Ada3, ER, and three distinct HATs [p300, (p300/CBP-associated factor) PCAF, and general control nonrepressed 5 (Gcn5)] are present in a complex. Using chromatin immunoprecipitation analysis, we show that short hairpin RNA (shRNA)-mediated knockdown of Ada3 in ER-positive breast cancer cells significantly reduced the ligand-dependent recruitment of p300, PCAF, and Gcn5 to the ER-responsive pS2 promoter. Finally, we use shRNA knockdown to show that Ada3 is critical for estrogen-dependent proliferation of ER-positive breast cancer cell lines in two-dimensional, as well as three-dimensional, culture. Knockdown of Ada3 in ER-positive MCF-7 cells induced reversion of the transformed phenotype in three-dimensional culture. Thus, our results show an important role of Ada3 in HAT recruitment to estrogen-responsive target gene promoters and for estrogen-dependent proliferation of breast cancer cells.


Assuntos
Neoplasias da Mama/patologia , Neoplasias da Mama/fisiopatologia , Histona Acetiltransferases/metabolismo , Receptores de Estrogênio/fisiologia , Fatores de Transcrição/genética , Neoplasias da Mama/genética , Divisão Celular , Linhagem Celular Tumoral , Cromatina/genética , Colágeno , Combinação de Medicamentos , Estrogênios , Feminino , Humanos , Laminina , Proteoglicanas , RNA Neoplásico/genética , Fatores de Transcrição/metabolismo
20.
Cancer Res ; 67(21): 10286-95, 2007 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-17974970

RESUMO

Elevated expression of Bmi-1 is associated with many cancers, including breast cancer. Here, we examined the oncogenic potential of Bmi-1 in MCF10A cells, a spontaneously immortalized, nontransformed strain of human mammary epithelial cells (HMEC). Bmi-1 overexpression alone in MCF10A cells did not result in oncogenic transformation. However, Bmi-1 co-overexpression with activated H-Ras (RasG12V) resulted in efficient transformation of MCF10A cells in vitro. Although early-passage H-Ras-expressing MCF10A cells were not transformed, late-passage H-Ras-expressing cells exhibited features of transformation in vitro. Early- and late-passage H-Ras-expressing cells also differed in levels of expression of H-Ras and Ki-67, a marker of proliferation. Subsets of early-passage H-Ras-expressing cells exhibited high Ras expression and were negative for Ki-67, whereas most late-passage H-Ras-expressing cells expressed low levels of Ras and were Ki-67 positive. Injection of late-passage H-Ras-expressing cells in severe combined immunodeficient mice formed carcinomas with leiomatous, hemangiomatous, and mast cell components; these tumors were quite distinct from those induced by late-passage cells co-overexpressing Bmi-1 and H-Ras, which formed poorly differentiated carcinomas with spindle cell features. Bmi-1 and H-Ras co-overexpression in MCF10A cells also induced features of epithelial-to-mesenchymal transition. Importantly, Bmi-1 inhibited senescence and permitted proliferation of cells expressing high levels of Ras. Examination of various growth-regulatory pathways suggested that Bmi-1 overexpression together with H-Ras promotes HMEC transformation and breast oncogenesis by deregulation of multiple growth-regulatory pathways by p16(INK4a)-independent mechanisms.


Assuntos
Neoplasias da Mama/etiologia , Transformação Celular Neoplásica , Genes ras , Proteínas Nucleares/fisiologia , Proteínas Proto-Oncogênicas/fisiologia , Proteínas Repressoras/fisiologia , Animais , Neoplasias da Mama/patologia , Linhagem Celular , Proliferação de Células , Quinase 4 Dependente de Ciclina/genética , Inibidor p16 de Quinase Dependente de Ciclina/fisiologia , Dano ao DNA , MAP Quinases Reguladas por Sinal Extracelular/fisiologia , Feminino , Genes bcl-1 , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/fisiologia , Antígeno Ki-67/análise , Camundongos , Camundongos SCID , Fosforilação , Molécula-1 de Adesão Celular Endotelial a Plaquetas/análise , Complexo Repressor Polycomb 1 , Proteínas Serina-Treonina Quinases/fisiologia , Proteínas Proto-Oncogênicas c-akt/fisiologia , Proteína Supressora de Tumor p53/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA