Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 153
Filtrar
1.
Luminescence ; 39(5): e4738, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38719576

RESUMO

A spectrofluorimetric method using fluorescent carbon dots (CDs) was developed for the selective detection of azelnidipine (AZEL) pharmaceutical in the presence of other drugs. In this study, N-doped CDs (N-CDs) were synthesized through a single-step hydrothermal process, using citric acid and urea as precursor materials. The prepared N-CDs showed a highly intense blue fluorescence emission at 447 nm, with a photoluminescence quantum yield of ~21.15% and a fluorescence lifetime of 0.47 ns. The N-CDs showed selective fluorescence quenching in the presence of all three antihypertensive drugs, which was used as a successful detection platform for the analysis of AZEL. The photophysical properties, UV-vis light absorbance, fluorescence emission, and lifetime measurements support the interaction between N-CDs and AZEL, leading to fluorescence quenching of N-CDs as a result of ground-state complex formation followed by a static fluorescence quenching phenomenon. The detection platform showed linearity in the range 10-200 µg/ml (R2 = 0.9837). The developed method was effectively utilized for the quantitative analysis of AZEL in commercially available pharmaceutical tablets, yielding results that closely align with those obtained from the standard method (UV spectroscopy). With a score of 0.76 on the 'Analytical GREEnness (AGREE)' scale, the developed analytical method, incorporating 12 distinct green analytical chemistry components, stands out as an important technique for estimating AZEL.


Assuntos
Ácido Azetidinocarboxílico , Carbono , Di-Hidropiridinas , Pontos Quânticos , Espectrometria de Fluorescência , Di-Hidropiridinas/análise , Di-Hidropiridinas/química , Carbono/química , Ácido Azetidinocarboxílico/análise , Ácido Azetidinocarboxílico/análogos & derivados , Ácido Azetidinocarboxílico/química , Pontos Quânticos/química , Química Verde , Comprimidos/análise , Corantes Fluorescentes/química , Preparações Farmacêuticas/química , Preparações Farmacêuticas/análise , Estrutura Molecular
2.
Artigo em Inglês | MEDLINE | ID: mdl-38438649

RESUMO

This study reviews scholarly publications on data envelopment analysis (DEA) studies on acute care hospital (ACH) efficiency published between 1984 and 2022 in scholarly peer-reviewed journals. We employ systematic literature review (SLR) method to identify and analyze pertinent past research using predetermined steps. The SLR offers a comprehensive resource that meticulously analyzes DEA methodology for practitioners and researchers focusing on ACH efficiency measurement. The articles reviewed in the SLR are analyzed and synthesized based on the nature of the DEA modelling process and the key findings from the DEA models. The key findings from the DEA models are presented under the following sections: effects of different ownership structures; impacts of specific healthcare reforms or other policy interventions; international and multi-state comparisons; effects of changes in competitive environment; impacts of new technology implementations; effects of hospital location; impacts of quality management interventions; impact of COVID-19 on hospital performance; impact of teaching status, and impact of merger. Furthermore, the nature of DEA modelling process focuses on use of sensitivity analysis; choice of inputs and outputs; comparison with Stochastic Frontier Analysis; use of congestion analysis; use of bootstrapping; imposition of weight restrictions; use of DEA window analysis; and exogenous factors. The findings demonstrate that, despite several innovative DEA extensions and hospital applications, over half of the research used the conventional DEA models. The findings also show that the most often used inputs in the DEA models were labor-oriented inputs and hospital beds, whereas the most frequently used outputs were outpatient visits, followed by surgeries, admissions, and inpatient days. Further research on the impact of healthcare reforms and health information technology (HIT) on hospital performance is required, given the number of reforms being implemented in many countries and the role HIT plays in enhancing care quality and lowering costs. We conclude by offering several new research directions for future studies.

3.
Sci Total Environ ; 923: 171348, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38438046

RESUMO

We report for the first-time higher zinc (Zn) solubilization efficiency and plant growth promotion by an entomopathogenic fungus (EPF), Metarhizium pingshaense IISR-EPF-14, which was earlier isolated from Conogethes punctiferalis, a pest of global importance. The Zn solubilizing efficiency of the fungus varied depending on the type of insoluble source of Zn used, which was observed to be 1.6 times higher in Zn3(PO4)2-amended media compared to ZnO media. In liquid media, there was a 6.2-fold increase in available Zn in ZnO-amended media, whereas a 20.2-fold increase in available Zn was recorded in Zn3(PO4)2 medium. We ascribe the production of various organic acids such as gluconic, keto-gluconic, oxalic, tartaric, malonic, succinic and formic acids, which in general, interact with insoluble Zn sources and make them soluble by forming metal cations and displacing anions as the major mechanism for Zn solubilization by M. pingshaense. However, the type and amount of organic acid produced in the media varied depending on the source of Zn used and the incubation period. Application of the fungus alone and in combination with insoluble Zn sources enhanced various plant growth parameters in rice and cardamom plants. Moreover, the uptake of Zn in rice plants was enhanced up to ~2.5-fold by fungal application. The fungus also exhibited various other plant growth-promoting traits, such as production of Indole-3-acetic acid, ammonia, siderophores, solubilization of mineral phosphate, and production of hydrolytic enzymes such as α-amylase, protease, and pectinase. Hence, apart from its use as a biological control agent, M. pingshaense has the potential to be used as a bio-fortifier to enhance the solubilization and uptake of Zn from nutrient poor soils under field conditions. Our findings shed light on the broader ecological role played by this fungus and widen its scope for utilization in sustainable agriculture.


Assuntos
Metarhizium , Óxido de Zinco , Zinco , Formiatos , Fungos , Microbiologia do Solo
4.
J Org Chem ; 89(10): 7109-7114, 2024 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-38319673

RESUMO

We present a streamlined, metal-free, one-pot domino approach to efficiently synthesize oxazolidinethione derivatives containing substituted quaternary amino acids. This method employs α-amino esters, aldehydes, and CS2 under mild conditions, constructing three new bonds (C-N, C-C, and C-O) to produce oxazolidinethione compounds featuring a quaternary center and a beta-hydroxy derivative in high yields. This scalable protocol enables the creation of libraries of biologically significant, intricate amino acid derivatives using amino esters and aldehydes.

5.
Cureus ; 15(10): e46622, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37936988

RESUMO

INTRODUCTION: The incorporation of a three-dimensional (3D) framework enables the surgeon to strategically plan their surgical intervention through the utilisation of the printed model. This encompasses the process of ascertaining the surgical approach, choosing the suitable reduction technique, finding the required implant dimensions, defining the ideal placement and alignment of the implant, and conducting a simulated practise of the procedure using a 3D printed duplicate of the anatomical structures. Therefore, we designed this study to evaluate the role of two imaging modalities (computed tomography (CT) and magnetic resonance imaging (MRI)) for pre-surgical planning for orthopaedic surgeries. METHODOLOGY: The present investigation entailed a prospective analysis of total knee arthroplasties (TKAs) that were performed using patient-specific instrumentation (PSI) from 2019 to 2022. After performing the bone resection operation utilising a customised cutting jig specific to each patient, the exact thickness of the resected bone was evaluated using a vernier calliper. In the MRI group, the researchers directly compared the cutting thickness during surgery with the consistency planned before the operation. In contrast, the CT group added the presumed cartilage thickness (2 mm) to the actual thickness of the bone that was removed from the lateral condyles. RESULTS:  The planned incision thickness in the distal femoral was 8.5 ± 0.8 in the CT group and 8.9 ± 0.5 in the MRI group, while the actual incision thickness was reported as 9.8 ± 0.54 in CT and 8.3 ± 1.1; however, no significant mean difference was found between both groups. The planned incision thickness was 2.6 ± 1.1 in the CT group and 2.43 ± 1.66 in the MRI group, while the actual thickness was observed as 2.5 ± 0.6 and 2.88 ± 1.12 without significant difference (p = 0.86). CONCLUSION: While magnetic resonance imaging (MRI) allows for the visualisation of cartilage, it has been observed that the MRI-based patient-specific instrumentation (PSI) system does not exhibit superior accuracy in projecting bone incision thickness compared to the computed tomography (CT)-based PSI system.

6.
Nanotechnology ; 35(6)2023 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-37918017

RESUMO

Non-enzymatic screen-printed chemiresistive interdigitated electrodes (SPCIE) were designed and fabricated using a low-cost screen-printing method for detection of the glucose. The interdigitated electrodes (IDE) pattern was printed using conductive graphene ink on the glossy surface of the photo paper. The proposed glossy photo paper-based SPCIE are functionalized with multi-walled carbon nanotubes-zinc oxide (MWCNTs-ZnO) nanofibers to create the chemiresistive matrix. Further, to bind these nanofibers with the graphene electrode surface, we have used the green synthesized silver nanoparticles (AgNPs) with banana flower stem fluid (BFSF) as a binder solution. AgNPs with BFSF form the conductive porous natural binder layer (CPNBL). It does not allow to increase the resistivity of the deposited material on graphene electrodes and also keeps the nanofibers intact with paper-based SPCIE. The synthesized material of MWCNT-ZnO nanofibers and green synthesized AgNPs with BFSF as a binder were characterized by Ultraviolet-visible spectroscopy (UV-vis), scanning electron microscope (SEM), x-ray diffraction (XRD), and Fourier-transform infrared spectroscopy (FTIR). The amperometric measurements were performed on the proposed SPCIE sensor to detect the glucose sample directly. The innovative paper-based SPCIE glucose sensor exhibits a linear corelation between current measurements and glucose concentration in the range between 45.22µm and 20 mm, with a regression coefficient (R2) of 0.9902 and a lower limit of detection (LoD) of 45.22µm (n= 5). The sensitivity of the developed SPCIE sensor was 2178.57µAmM-1cm-2, and the sensor's response time determined was approximately equal to 18 s. The proposed sensor was also tested for real blood serum sample, and relative standard deviation (RSD) was found equal to 2.95%.

7.
Org Biomol Chem ; 21(34): 6914-6918, 2023 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-37593940

RESUMO

This communication reports a nature-inspired Janus G-C nucleobase featuring two recognition sites: DDA (G mimic) and DAA (C mimic), which is capable of forming a linear tape-like supramolecular polymer structure. As demonstrated herein, the amino group of this self-assembling system can be further modified to yield a highly stable quadruple H-bonding system as well as a masked self-assembling system cleavable upon exposure to light.

8.
Philos Trans A Math Phys Eng Sci ; 381(2250): 20220243, 2023 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-37211038

RESUMO

Integrin, as a mechanotransducer, establishes the mechanical reciprocity between the extracellular matrix (ECM) and cells at integrin-mediated adhesion sites. This study used steered molecular dynamics (SMD) simulations to investigate the mechanical responses of integrin αvß3 with and without 10th type III fibronectin (FnIII10) binding for tensile, bending and torsional loading conditions. The ligand-binding integrin confirmed the integrin activation during equilibration and altered the integrin dynamics by changing the interface interaction between ß-tail, hybrid and epidermal growth factor domains during initial tensile loading. The tensile deformation in integrin molecules indicated that fibronectin ligand binding modulates its mechanical responses in the folded and unfolded conformation states. The bending deformation responses of extended integrin models reveal the change in behaviour of integrin molecules in the presence of Mn2+ ion and ligand based on the application of force in the folding and unfolding directions of integrin. Furthermore, these SMD simulation results were used to predict the mechanical properties of integrin underlying the mechanism of integrin-based adhesion. The evaluation of integrin mechanics provides new insights into understanding the mechanotransmission (force transmission) between cells and ECM and contributes to developing an accurate model for integrin-mediated adhesion. This article is part of a discussion meeting issue 'Supercomputing simulations of advanced materials'.


Assuntos
Fibronectinas , Integrinas , Integrinas/metabolismo , Fibronectinas/química , Fibronectinas/metabolismo , Ligantes , Ligação Proteica
9.
Sci Total Environ ; 889: 164285, 2023 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-37209750

RESUMO

Due to relentless production and disposal of nano zinc oxide (nZnO), it has become critical to comprehend the serious risks large-scale accumulation of nZnO pose to bacterial communities in soil. The primary objective was to evaluate the changes in bacterial community structure and associated functional pathways through predictive metagenomic profiling and subsequent validation through Quantitative Realtime PCR in soil spiked with nZnO (0, 50, 200, 500 and 1000 mg Zn kg-1) and similar levels of bulk ZnO (bZnO). The results revealed that soil microbial biomass-C, -N, -P, soil respiration and enzyme activities decreased markedly at higher ZnO levels. The alpha diversity decreased with increasing ZnO level, with more impact under nZnO, while beta diversity analyses indicated a distinct dose- dependent separation of bacterial communities. The dominant taxa including Proteobacteria, Bacterioidetes, Acidobacteria and Planctomycetes significantly increased in abundance, while Firmicutes, Actinobacteria and Chloroflexi decreased in abundance with elevated nZnO and bZnO levels. Redundancy analysis indicated that changes in bacterial community structure instilled a greater dose- rather than size- specific response on key microbial parameters. Predicted key functions did not show a dose- specific response, and at 1000 mg Zn kg-1, methane metabolism as well as starch and sucrose metabolism were attenuated, while functions involving two component systems and bacterial secretion systems were enhanced under bZnO indicating better stress avoidance mechanism than under nZnO. Realtime PCR and microbial endpoint assays confirmed the metagenome derived taxonomic and functional data, respectively. Taxa and functions that varied substantially under stress were established as bioindicators to predict nZnO toxicity in soils. Taxon-function decoupling indicated that the soil bacterial communities deployed adaptive mechanisms under high ZnO, with lesser buffering capacity and resilience of communities under nZnO.


Assuntos
Solo , Óxido de Zinco , Solo/química , Óxido de Zinco/toxicidade , Bactérias , Acidobacteria , Firmicutes , Microbiologia do Solo
10.
Indian J Community Med ; 48(1): 126-130, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37082401

RESUMO

Introduction: The incidence of neonatal mortality has declined over the past few decades, but it remains a major concern. Identifying risk factors associated with adverse outcomes may help prevent and manage neonatal morbidity and mortality. The study aimed to explore the associated antenatal risk factors among pregnant women delivering in a tertiary care hospital in South India with adverse neonatal outcomes. Material and Methods: This was a hospital-based, matched case-control study among pregnant women belonging to Puducherry and admitted for delivery. Cases were pregnant women who gave birth to adverse neonatal outcomes, while controls were pregnant women who gave birth to alive and healthy babies. Data was collected from various sources, primarily from medical records, and triangulated. Results: Adverse neonatal outcomes were ten times more if pregnant women had placental complications and seven times more for intrauterine growth restriction noted during pregnancy. Pregnant women referred from peripheral care centers had 1.6 times more risk of adverse neonatal outcomes. Prior hospital admission during the present pregnancy had a protective effect in the final adjusted analysis. Conclusion: Risk factors should be routinely monitored in all health centers. Women with high-risk pregnancies should be identified earlier, and appropriate care should be provided.

11.
Biofabrication ; 15(2)2023 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-36863017

RESUMO

Prostate cancer bone metastasis is the leading cause of cancer-related mortality in men in the United States, causing severe damage to skeletal tissue. The treatment of advanced-stage prostate cancer is always challenging due to limited drug treatment options, resulting in low survival rates. There is a scarcity of knowledge regarding the mechanisms associated with the effects of biomechanical cues by the interstitial fluid flow on prostate cancer cell growth and migration. We have designed a novel bioreactor system to demonstrate the impact of interstitial fluid flow on the migration of prostate cancer cells to the bone during extravasation. First, we demonstrated that a high flow rate induces apoptosis in PC3 cells via TGF-ß1 mediated signaling; thus, physiological flow rate conditions are optimum for cell growth. Next, to understand the role of interstitial fluid flow in prostate cancer migration, we evaluated the migration rate of cells under static and dynamic conditions in the presence or absence of bone. We report that CXCR4 levels were not significantly changed under static and dynamic conditions, indicating that CXCR4 activation in PC3 cells is not influenced by flow conditions but by the bone, where CXCR4 levels were upregulated. The bone-upregulated CXCR4 levels led to increased MMP-9 levels resulting in a high migration rate in the presence of bone. In addition, upregulated levels ofαvß3integrins under fluid flow conditions contributed to an overall increase in the migration rate of PC3 cells. Overall, this study demonstrates the potential role of interstitial fluid flow in prostate cancer invasion. Understanding the critical role of interstitial fluid flow in promoting prostate cancer cell progression will enhance current therapies for advanced-stage prostate cancer and provide improved treatment options for patients.


Assuntos
Líquido Extracelular , Neoplasias da Próstata , Masculino , Humanos , Neoplasias da Próstata/patologia , Transdução de Sinais , Linhagem Celular Tumoral , Movimento Celular
12.
J Rural Health ; 39(4): 719-727, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-36916142

RESUMO

PURPOSE: As the Flex Program celebrates its 25th anniversary, we examined changes in critical access hospital (CAH) financial performance, investigated whether CAH status has reduced hospitals' financial vulnerability, and identified factors influencing financial performance. METHODS: We collected data on acute care hospitals in Pennsylvania's rural counties for 2000-20. Our sample contained 1,444 hospital-year observations. We used trend analysis to compare the financial performance of CAHs and rural prospective payment system (PPS) hospitals (non-CAHs). We investigated the effect of CAH status on financial performance and identified the time-variant factors impacting financial performance using fixed-effects regression analysis. RESULTS: The median total margin of CAHs lagged behind that of non-CAHs. When compared to non-CAH costs over the same period, the median cost per patient day incurred by CAHs has increased, with the rate of increase being significantly higher in the most recent decade. Our findings show that while CAH status does not appear to have a direct impact on the total margin, it is significantly associated with a higher cost per patient day. CONCLUSIONS: CAHs in Pennsylvania appear to be facing a double whammy of declining margins and rising costs compared to non-CAHs. Our findings demonstrate how crucial the Flex program has been in sustaining CAHs in Pennsylvania ever since its inception. Our findings have implications for rural health care delivery as well. While providing financial support and operational flexibility to CAHs should be a continuing policy priority, a long-term policy goal should be to envision an economic development strategy that capitalizes on the unique strengths of each of the rural archetypes.


Assuntos
Medicare , Sistema de Pagamento Prospectivo , Estados Unidos , Humanos , Pennsylvania , Hospitais Rurais , Acessibilidade aos Serviços de Saúde
13.
Int J Health Policy Manag ; 12: 7442, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36404505

RESUMO

As health systems transition to value-based care delivery models, reducing costs and improving quality of care without sacrificing either remains a challenge for many healthcare organizations. There is extensive research on hospital costs, however, works addressing the complex relationship between hospital costs and the quality of care have been limited. In this commentary, I expound on the scoping review on integrated hospital strategies by Wackers et al that aim to improve quality while lowering costs. Specifically, I reiterate the complexity of the relationship between cost and quality and delve into major interdependent themes identified by the authors as relevant for the implementation of hospitals' integrated strategy.


Assuntos
Atenção à Saúde , Hospitais , Humanos , Custos Hospitalares
15.
Sci Total Environ ; 859(Pt 1): 160032, 2023 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-36370776

RESUMO

The unsafe and reckless disposal of metal oxide nanoparticles like ZnO (nZnO) into the soil could seriously impact bacterial behavioural responses and functions. Under such stress, biofilm formation is considered to be a robust mechanism for bacterial survival in soil. We examined the response of bacterial metagenomes in soils exposed to varying levels of Zn (50, 200, 500 and 1000 mg kg-1) as nano Zn oxide (nZnO) in terms of biofilm genesis and regulation and their co-occurrences with multidrug resistance genes (MDRGs) and mobile genetic elements (MGEs). The size-specific effects of nZnO were verified using its bulk counterpart (bZnO). Both nZnO and bZnO facilitated profusion of biofilm related genes (BGs) especially at higher Zn levels (500 and 1000 mg kg-1 Zn), though maximum abundance was registered at a comparatively lower level under nZnO. In general, nZnO favoured an enhancement of genes involved in exopolysaccharide biosynthesis and attachment, while bZnO favoured genes related to capsule formation, chemotaxis and biofilm dispersion. Co-occurrence network analysis revealed significant positive correlations between abundances of BGs, MDRGs and MGEs, indicating an enhanced probability for horizontal gene transfer of MDRGs in nZnO polluted soils.


Assuntos
Nanopartículas Metálicas , Nanopartículas , Óxido de Zinco , Óxido de Zinco/toxicidade , Solo , Biofilmes , Nanopartículas Metálicas/toxicidade , Óxidos
16.
Intern Emerg Med ; 18(1): 219-227, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36136289

RESUMO

PURPOSE: Predict in advance the need for hospitalization of adult patients for fall-related fractures based on information available at the time of triage to help decision-making at the emergency department (ED). METHODS: We developed machine learning models using routinely collected triage data at a regional hospital chain in Pennsylvania to predict admission to an inpatient unit. We considered all patients presenting to the ED for fall-related fractures. Patients who were 18 years or younger, who left the ED against medical advice, left the ED waiting room without being seen by a provider, and left the ED after initial diagnostics were excluded from the analysis. We compared models obtained using triage data (pre-model) with models developed using additional data obtained after physicians' diagnoses (post-model). RESULTS: Our results show good discriminatory power on predicting hospital admissions. Neural network models performed the best (AUC: pre-model = 0.938 [CI 0.920-0.956], post-model = 0.983 [0.974-0.992]). The logistic regression analysis provides additional insights into the data and the relationships between the variables. CONCLUSIONS: Using limited data available at the time of triage, we developed four machine learning models aimed at predicting hospitalization for patients presenting to the ED for fall-related fractures. All the four models were robust and performed well. Neural network method, however, performed the best for both pre- and post-models. Simple, parsimonious machine learning models can provide high accuracy for predicting hospital admission.


Assuntos
Acidentes por Quedas , Triagem , Adulto , Humanos , Triagem/métodos , Hospitalização , Serviço Hospitalar de Emergência , Hospitais
17.
Mater Adv ; 3(20): 7484-7500, 2022 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-36324871

RESUMO

Clays have been used as early as 2500 BC in human civilization for medicinal purposes. The ease of availability, biocompatibility, and versatility of these unique charged 2D structures abundantly available in nature have enabled the extensive applications of clays in human history. Recent advances in the use of clays in nanostructures and as components of polymer clay nanocomposites have exponentially expanded the use of clays in medicine. This review covers the details of structures and biomedical applications of several common clays, including montmorillonite, LAPONITE®, kaolinite, and halloysite. Here we describe the applications of these clays in wound dressings as hemostatic agents in drug delivery of drugs for cancer and other diseases and tissue engineering. Also reviewed are recent experimental and modeling studies that elucidate the impact of clay structures on cellular processes and cell adhesion processes. Various mechanisms of clay-mediated bioactivity, including protein localization, modulation of cell adhesion, biomineralization, and the potential of clay nanoparticles to impact cell differentiation, are presented. We also review the current developments in understanding the impact of clays on cellular responses. This review also elucidates new emerging areas of use of nanoclays in osteogenesis and the development of in vitro models of bone metastasis of cancer.

18.
Health Syst (Basingstoke) ; 11(4): 288-302, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36325421

RESUMO

Falls are one of the most common cause of nonfatal and fatal injuries in the U.S. costing over an estimated $54 billion annually. A significant percentage of patients presenting to hospital emergency departments (ED) for falls are hospitalised. This paper analyzes a regional hospital data pertaining to adults presenting to the ED because of falls. We use patient demographics and medical conditions to help identify patients at risk for immediate undesirable outcomes after a fall. Furthermore, we determine the relative risk of patient hospitalisation and surgery and their characteristics. Our results indicate that older patient's, patients arriving by ambulance, patients with higher severity levels and patients with pre-existing comorbidities were at a higher relative risk of hospitalisation and surgery. Furthermore, patients with medical conditions pertaining to femur and tibia fractures, pelvis, renal failure, ambulatory dysfunction, and cellulitis, among others, and non-Hispanic whites were at a much higher relative risk of hospitalisation and surgery.

19.
Nanomaterials (Basel) ; 12(15)2022 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-35957117

RESUMO

Ultra-sensitive and responsive humidity sensors were fabricated by deposition of graphene oxide (GO) on laser-induced graphene (LIG) electrodes fabricated by a low-cost visible laser scribing tool. The effects of GO layer thickness and electrode geometry were investigated. Sensors comprising 0.33 mg/mL GO drop-deposited on spiral LIG electrodes exhibited high sensitivity up to 1800 pF/% RH at 22 °C, which is higher than previously reported LIG/GO sensors. The high performance was ascribed to the high density of the hydroxyl groups of GO, promoted by post-synthesis sonication treatment, resulting in high water physisorption rates. As a result, the sensors also displayed good stability and short response/recovery times across a wide tested range of 0-97% RH. The fabricated sensors were benchmarked against commercial humidity sensors and displayed comparable performance and stability. Finally, the sensors were integrated with a near-field communication tag to function as a wireless, battery-less humidity sensor platform for easy read-out of environmental humidity values using smartphones.

20.
Comput Struct Biotechnol J ; 20: 4157-4171, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36016710

RESUMO

ADF/cofilin's cooperative binding to actin filament modifies the conformation and alignment of G-actin subunits locally, causing the filament to sever at "boundaries" formed among bare and ADF/cofilin-occupied regions. Analysis of the impact of the ADF/cofilin cluster boundary on the deformation behavior of actin filaments in a mechanically strained environment is critical for understanding the biophysics of their severing. The present investigation uses molecular dynamics simulations to generate atomic resolution models of bare, partially, and fully cofilin decorated actin filaments. Steered molecular dynamics simulations are utilized to determine the mechanical properties of three filament models when subjected to axial stretching, axial compression, and bending forces. We highlight differences in strain distribution, failure mechanisms in the three filament models, and biomechanical effects of cofilin cluster boundaries in overall filament rupture. Based on the influence of ADF/cofilin binding on intrastrand and interstrand G-actin interfaces, the cofilin-mediated actin filament severing model proposed here can help understand cofilin mediated actin dynamics.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA