Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Dalton Trans ; 53(20): 8843-8849, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38716691

RESUMO

Heteroatomic anion doping represents a powerful approach for manipulating the electronic configuration of the active metal locus in electrocatalysts, resulting in enhanced multifunctional electrocatalytic properties in hydrogen/oxygen evolution reactions (HER/OER). Here, fluorine-tailored Ni2P-F3 nanosheets were synthesized and evaluated as a robust multifunctional electrocatalyst for HER, OER, and UOR. Our comprehensive experimental and theoretical investigations reveal that the anionic F effectively tailored the electronic states of the Ni2P-F3 nanosheets, resulting in an elevated d-band center and optimizing the sorption capacity of intermediates. In addition to thermodynamically and kinetically favoured redox reactions, F doping facilitates the reconstruction and generation of active γ-NiOOH. Resulting from the optimized electronic configuration and nanosheet architecture, outstanding catalytic activities are demonstrated by Ni2P-F3 with low overpotentials to reach 100 mA cm-2 for HER (177 mV) and OER (293 mV), surpassing Ni2P by 234 and 205 mV, respectively. Notably, 1.618 V is required for full-water-diversion to reach 10 mA cm-2, while 1.414 V is required with urea oxidation for 100 mA cm-2.

2.
Nanoscale ; 15(31): 12961-12971, 2023 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-37462542

RESUMO

Lithium-sulfur (Li-S) batteries are severely restricted for practical application due to the polysulfide shuttle effect, Li dendrites and thermal runaway. The use of PEO-based polymer composite electrolytes (PCEs) as an alternative strategy suffers from limited lithium-ion conductivity with deficient long-range transfer route. Herein, Li6.4La3Zr1.4Ta0.6O12 (LLZTO) nanoparticles modified with an in situ-synthesized zwitterionic covalent organic framework layer (denoted as LLZTO@HUT4) were introduced into PEO-based PCEs. Zwitterionic HUT4 modified the lithiophobic LiOH/Li2CO3 layer on the surface of LLZTO nanoparticles, which could notably promote Li+ ion transport for superior electrochemical performance of PCEs. Additionally, the intermediate layer HUT4 located between LLZTO and PEO could further improve the mechanical properties of electrolytes due to the enhanced inorganic/organic interface compatibility and intermolecular interaction. As a result, the obtained LLZTO@HUT4-15%/PEO electrolyte exhibited a competent ionic conductivity of 0.73 mS cm-1 with a Li+ transference number of up to 0.74 at 60 °C. The assembled S@CNT|LLZTO@HUT4-15%/PEO|Li coin cell delivered a considerable initial discharge capacity of 1018 mA h g-1 at 0.2 C, with approximately 92.1% capacity retention after 100 cycles, elucidating an obviously suppressed shuttle effect.

3.
J Hazard Mater ; 443(Pt B): 130245, 2023 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-36332278

RESUMO

Bioleaching is intensively investigated for recovering valuable metals such as Li, Co, Ni and Cu. Nickel ion stress threatens the health of microorganisms when Ni2+ starts to accumulate in the leachate during the bioleaching of materials that are rich in Ni, such as spent lithium-ion batteries. The possible mechanisms underlying the response of S. thermosulfidooxidans to nickel ion stress were analyzed using a multi-scale approach. Under the condition of nickel ion stress, high concentrations of nickel ions were immobilized by extracellular polymeric substances, while concentrations of nickel ions inside the cells remained low. The intracellular adenosine triphosphate (ATP) concentration and H+-ATPase activity increased to maintain normal cell growth and metabolic activities. Scavenging abilities of S. thermosulfidooxidans for hydrogen peroxide and superoxide anion were enhanced to reduce oxidative damage induced by nickel ion stress. There were 734 differentially expressed genes identified by RNA-seq under nickel ion stress. Most of them were involved in oxidative phosphorylation, glutathione metabolism and genetic information processing, responsible for intracellular energy utilization, intracellular antioxidant capacity and DNA damage repair, respectively. The results of this study are of major significance for in-depth understanding of the mechanisms of acidophilic microorganisms' resistance to metal ions.


Assuntos
Lítio , Níquel , Níquel/toxicidade , Fontes de Energia Elétrica , Íons
4.
Org Biomol Chem ; 20(9): 1879-1882, 2022 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-35166743

RESUMO

A facile Stevens rearrangement of the Weinreb amide and the subsequent key steps mediated by the carbonyl of the Weinreb amide led to the construction of azaspirocyclic skeletons of some typical alkaloids. And the formal total synthesis of (±)-cephalotaxine was completed via a shorter synthetic route by this efficient method. Further studies on the development and asymmetric synthesis application of this strategy are underway.

5.
Bioresour Bioprocess ; 9(1): 35, 2022 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38647594

RESUMO

Sulfate-containing wastewater has a serious threat to the environment and human health. Microbial technology has great potential for the treatment of sulfate-containing wastewater. It was found that nano-photocatalysts could be used as extracellular electron donors to promote the growth and metabolic activity of non-photosynthetic microorganisms. However, nano-photocatalysts could also induce oxidative stress and damage cells. Therefore, the interaction mechanism between photosynthetic nanocatalysts and non-photosynthetic microorganisms is crucial to determine the regulatory strategies for microbial wastewater treatment technologies. In this paper, the mechanism and regulation strategy of cadmium sulfide nanoparticles (CdS NPs) on the growth of sulfate-reducing bacteria and the sulfate reduction process were investigated. The results showed that the sulfate reduction efficiency could be increased by 6.4% through CdS NPs under light conditions. However, the growth of Desulfovibrio desulfuricans C09 was seriously inhibited by 55% due to the oxidative stress induced by CdS NPs on cells. The biomass and sulfate reduction efficiency could be enhanced by 6.8% and 5.9%, respectively, through external addition of humic acid (HA). At the same time, the mechanism of the CdS NPs strengthening the sulfate reduction process by sulfate bacteria was also studied which can provide important theoretical guidance and technical support for the development of microbial technology combined with extracellular electron transfer (EET) for the treatment of sulfate-containing wastewater.

6.
J Nanosci Nanotechnol ; 18(5): 3291-3298, 2018 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-29442830

RESUMO

A new thermally conductive and electrically insulative polyimide were prepared by filling different amounts of hexagonal boron nitride (h-BN) particles, and the thermal conductivity of Polyimide (PI) composites were improved with the increasing h-BN content. Based on this, two methods were applied to improve thermal conductivity furtherly at limited filler loading in this paper. One is modifying the h-BN to improve interface interaction, another is fabricating a nano-micro hybrid filler with 2-D h-BN and 0-D nano-scale nanodiamond (ND) to build more effective conductive network. Both surface modification and hybrid system have a positive effect on thermal conductivity. The composites introducing 40 wt% hybrid filler (the weight ratio of ND/modified BN was 1/10) showed the highest thermal conductivity, being up to 0.98 W/(m K) (5.2 times that of PI). In addition, the composites exhibits excellent electrical insulation, thermal stability properties etc.

7.
J Nanosci Nanotechnol ; 15(5): 3780-5, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-26505005

RESUMO

Polyimide/multiwall carbon nanotube (PI/MWCNT) nanocomposite films with homogeneous MWCNTs dispersion were prepared via a solid state shearing pulverization (S3P) approach. Polyimide precursor, viz., poly(amic acid) (PAA), was synthesized from 4,4'-oxydianiline (ODA) and pyromellitic dianhydride (PMDA). Then, 3,3',4,4'-benzophenonetetracarboxylic dianhydride (BTDA) was mixed with the PAA powder and acid functionalized MWCNTs (acid-MWCNTs) by solid state shearing pulverization (S3P) approach. Finally, PI/MWCNT nanocomposite films were prepared by thermal imidization at elevated temperatures. Using such an approach not only the MWCNTs are well-dispersed but also the mechanical and thermal properties of PI are improved. The tensile strength of PI was enhanced by 74% and the elongation at break decreased to 10.35% with 5.0 wt% acid- MWCNT loading. And the glass transition temperature of PI was increased to 341 degrees C from 303 degrees C because of the strong interfacial bonding between PI and acid-MWCNTs. The solid state shearing pulverization (S3P) approach developed in this study provides a novel method to prepare various polymer composites with desired particle dispersion.


Assuntos
Nanocompostos/química , Nanotubos de Carbono/química , Polímeros/química , Nanotecnologia , Resistência à Tração
8.
J Nanosci Nanotechnol ; 15(8): 5807-15, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26369155

RESUMO

Nanodiamonds have recently attracted great attention because of their outstanding hardness in combination with excellent wear resistance. Chemistry modification of the surface and incorporation into a material are required in many applications. In this report, Nanodiamond particles were firstly reduced and two different approaches were used to prepare carbon fiber grafted with nano-diamond. Nanodiamonds functionalized with hydroxyl and amino groups via chemical modification were successfully introduced into the functionalized carbon fiber surface by covalent bonds. The modification of the carbon fibers was characterized using Fourier transform infrared spectroscopy (FTIR), scanning electron microscope (SEM), energy-dispersive X-ray spectroscopy (EDX), X-ray photoelectron spectroscopy (XPS) and Wide-angle X-ray diffraction (WAXD). BET surface area of the carbon fibers was increased by about 58% compared with the unmodified fibers.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA