Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 3035, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38600088

RESUMO

People living with HIV (PLWH) experience increased vulnerability to premature aging and inflammation-associated comorbidities, even when HIV replication is suppressed by antiretroviral therapy (ART). However, the factors associated with this vulnerability remain uncertain. In the general population, alterations in the N-glycans on IgGs trigger inflammation and precede the onset of aging-associated diseases. Here, we investigate the IgG N-glycans in cross-sectional and longitudinal samples from 1214 women and men, living with and without HIV. PLWH exhibit an accelerated accumulation of pro-aging-associated glycan alterations and heightened expression of senescence-associated glycan-degrading enzymes compared to controls. These alterations correlate with elevated markers of inflammation and the severity of comorbidities, potentially preceding the development of such comorbidities. Mechanistically, HIV-specific antibodies glycoengineered with these alterations exhibit a reduced ability to elicit anti-HIV Fc-mediated immune activities. These findings hold potential for the development of biomarkers and tools to identify and prevent premature aging and comorbidities in PLWH.


Assuntos
Senilidade Prematura , Infecções por HIV , Masculino , Humanos , Feminino , Imunoglobulina G , Estudos Transversais , Envelhecimento , Inflamação/complicações , Polissacarídeos
2.
J Bioenerg Biomembr ; 56(2): 181-191, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38411863

RESUMO

Lung adenocarcinoma (LUAD) is one of the most lethal and common malignancies. The energy metabolism of LUAD is a critical factor affecting its malignant progression, and research on this topic can aid in the development of novel cancer treatment targets. Bioinformatics analysis of the expression of long non-coding RNA (lncRNA) LINC00665 in LUAD was performed. Downstream regulatory molecules of LINC00665 were predicted using the StarBase database. We used quantitative reverse transcription polymerase chain reaction and western blot to measure the expression at mRNA and protein levels, respectively. The effects of the LINC00665/let-7c-5p/HMMR axis on cell viability in vitro were tested by CCK-8 assay. The regulatory effects on glycolysis were analyzed by extracellular acidification rate, oxygen consumption rate, glucose uptake, adenosine triphosphate production, and lactate production. The predicted competitive endogenous RNA mechanism between LINC00665 and let-7c-5p/HMMR was verified by a dual-luciferase reporter gene assay. LINC00665 was upregulated in LUAD. Silencing LINC00665 inhibited tumor proliferation and reduced the glycolytic activity of tumor cells. Additionally, the expression of LINC00665 had a negative correlation with that of let-7c-5p, while the expression of HMMR was remarkably inhibited by let-7c-5p. HMMR could affect the development of LUAD by influencing glycolytic capacity. Mechanistically, LINC00665 acted as a molecular sponge to absorb let-7c-5p and targeted HMMR. Transfection of let-7c-5p inhibitor or overexpression of HMMR plasmid could reverse the inhibition in proliferation and glycolysis of LUAD cells induced by silencing of LINC00665. In summary, this study demonstrated that the LINC00665/let-7c-5p/HMMR regulatory axis promoted the tumorigenesis of LUAD by enhancing aerobic glycolysis, suggesting that this regulatory axis was an effective target for inhibiting LUAD progression and providing theoretical support for the development of new drugs for LUAD.


Assuntos
Adenocarcinoma , MicroRNAs , Humanos , Glicólise , Metabolismo Energético , Sobrevivência Celular , Pulmão , MicroRNAs/genética , Proliferação de Células , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica
3.
Matrix Biol ; 124: 49-62, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37956856

RESUMO

Highly aggressive, metastatic, neuroendocrine prostate cancer, which typically develops from prostate cancer cells acquiring resistance to androgen deprivation therapy, is associated with limited treatment options and hence poor prognosis. We have previously demonstrated that the αVß3 integrin is over-expressed in neuroendocrine prostate cancer. We now show that LM609, a monoclonal antibody that specifically targets the human αVß3 integrin, hinders the growth of neuroendocrine prostate cancer patient-derived xenografts in vivo. Our group has recently identified a novel αVß3 integrin binding partner, NgR2, responsible for regulating the expression of neuroendocrine markers and for inducing neuroendocrine differentiation in prostate cancer cells. Through in vitro functional assays, we here demonstrate that NgR2 is crucial in promoting cell adhesion to αVß3 ligands. Moreover, we describe for the first time co-fractionation of αVß3 integrin and NgR2 in small extracellular vesicles derived from metastatic prostate cancer patients' plasma. These prostate cancer patient-derived small extracellular vesicles have a functional impact on human monocytes, increasing their adhesion to fibronectin. The monocytes incubated with small extracellular vesicles do not show an associated change in conventional polarization marker expression and appear to be in an early stage that may be defined as "adhesion competent". Overall, these findings allow us to better understand integrin-directed signaling and cell-cell communication during cancer progression. Furthermore, our results pave the way for new diagnostic and therapeutic perspectives for patients affected by neuroendocrine prostate cancer.


Assuntos
Neoplasias da Próstata , Masculino , Humanos , Neoplasias da Próstata/tratamento farmacológico , Neoplasias da Próstata/genética , Neoplasias da Próstata/metabolismo , Antagonistas de Androgênios , Transdução de Sinais , Anticorpos Monoclonais , Integrinas , Integrina alfaVbeta3/genética , Integrina alfaVbeta3/metabolismo , Linhagem Celular Tumoral
4.
Clin Proteomics ; 20(1): 37, 2023 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-37715129

RESUMO

BACKGROUND: Differentiating between a normal intrauterine pregnancy (IUP) and abnormal conditions including early pregnancy loss (EPL) or ectopic pregnancy (EP) is a major clinical challenge in early pregnancy. Currently, serial ß-human chorionic gonadotropin (ß-hCG) and progesterone are the most commonly used plasma biomarkers for evaluating pregnancy prognosis when ultrasound is inconclusive. However, neither biomarker can predict an EP with sufficient and reproducible accuracy. Hence, identification of new plasma biomarkers that can accurately diagnose EP would have great clinical value. METHODS: Plasma was collected from a discovery cohort of 48 consenting women having an IUP, EPL, or EP. Samples were analyzed by liquid chromatography-tandem mass spectrometry (LC-MS/MS) followed by a label-free proteomics analysis to identify significant changes between pregnancy outcomes. A panel of 14 candidate biomarkers were then verified in an independent cohort of 74 women using absolute quantitation by targeted parallel reaction monitoring mass spectrometry (PRM-MS) which provided the capacity to distinguish between closely related protein isoforms. Logistic regression and Lasso feature selection were used to evaluate the performance of individual biomarkers and panels of multiple biomarkers to predict EP. RESULTS: A total of 1391 proteins were identified in an unbiased plasma proteome discovery. A number of significant changes (FDR ≤ 5%) were identified when comparing EP vs. non-EP (IUP + EPL). Next, 14 candidate biomarkers (ADAM12, CGA, CGB, ISM2, NOTUM, PAEP, PAPPA, PSG1, PSG2, PSG3, PSG9, PSG11, PSG6/9, and PSG8/1) were verified as being significantly different between EP and non-EP in an independent cohort (FDR ≤ 5%). Using logistic regression models, a risk score for EP was calculated for each subject, and four multiple biomarker logistic models were identified that performed similarly and had higher AUCs than models with single predictors. CONCLUSIONS: Overall, four multivariable logistic models were identified that had significantly better prediction of having EP than those logistic models with single biomarkers. Model 4 (NOTUM, PAEP, PAPPA, ADAM12) had the highest AUC (0.987) and accuracy (96%). However, because the models are statistically similar, all markers in the four models and other highly correlated markers should be considered in further validation studies.

5.
bioRxiv ; 2023 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-37609144

RESUMO

People with HIV (PWH) experience an increased vulnerability to premature aging and inflammation-associated comorbidities, even when HIV replication is suppressed by antiretroviral therapy (ART). However, the factors that contribute to or are associated with this vulnerability remain uncertain. In the general population, alterations in the glycomes of circulating IgGs trigger inflammation and precede the onset of aging-associated diseases. Here, we investigate the IgG glycomes of cross-sectional and longitudinal samples from 1,216 women and men, both living with virally suppressed HIV and those without HIV. Our glycan-based machine learning models indicate that living with chronic HIV significantly accelerates the accumulation of pro-aging-associated glycomic alterations. Consistently, PWH exhibit heightened expression of senescence-associated glycan-degrading enzymes compared to their controls. These glycomic alterations correlate with elevated markers of inflammatory aging and the severity of comorbidities, potentially preceding the development of such comorbidities. Mechanistically, HIV-specific antibodies glycoengineered with these alterations exhibit reduced anti-HIV IgG-mediated innate immune functions. These findings hold significant potential for the development of glycomic-based biomarkers and tools to identify and prevent premature aging and comorbidities in people living with chronic viral infections.

6.
Front Oncol ; 13: 1180723, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37476379

RESUMO

As part of the tumor microenvironment (TME), collagen plays a significant role in cancer fibrosis formation. However, the collagen family expression profile and clinical features in lung adenocarcinoma (LUAD) are poorly understood. The objective of the present work was to investigate the expression pattern of genes from the collagen family in LUAD and to develop a predictive signature based on collagen family. The Cancer Genome Atlas (TCGA) samples were used as the training set, and five additional cohort samples obtained from the Gene Expression Omnibus (GEO) database were used as the validation set. A predictive model based on five collagen genes, including COL1A1, COL4A3, COL5A1, COL11A1, and COL22A1, was created by analyzing samples from the TCGA cohort using LASSO Cox analysis and univariate/multivariable Cox regression. Using Collagen-Risk scores, LUAD patients were then divided into high- and low-risk groups. KM survival analysis showed that collagen signature presented a robust prognostic power. GO and KEGG analyses confirmed that collagen signature was associated with extracellular matrix organization, ECM-receptor interaction, PI3K-Akts and AGE-RAGE signaling activation. High-risk patients exhibited a considerable activation of the p53 pathway and cell cycle, according to GSEA analysis. The Collage-Risk model showed unique features in immune cell infiltration and tumor-associated macrophage (TAM) polarization of the TME. Additionally, we deeply revealed the association of collagen signature with immune checkpoints (ICPs), tumor mutation burden (TMB), and tumor purity. We first constructed a reliable prognostic model based on TME principal component-collagen, which would enable clinicians to treat patients with LUAD more individually.

7.
Stem Cells ; 41(7): 685-697, 2023 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-37220178

RESUMO

Several differentiation protocols enable the emergence of hematopoietic stem and progenitor cells (HSPCs) from human-induced pluripotent stem cells (iPSCs), yet optimized schemes to promote the development of HSPCs with self-renewal, multilineage differentiation, and engraftment potential are lacking. To improve human iPSC differentiation methods, we modulated WNT, Activin/Nodal, and MAPK signaling pathways by stage-specific addition of small-molecule regulators CHIR99021, SB431542, and LY294002, respectively, and measured the impact on hematoendothelial formation in culture. Manipulation of these pathways provided a synergy sufficient to enhance formation of arterial hemogenic endothelium (HE) relative to control culture conditions. Importantly, this approach significantly increased production of human HSPCs with self-renewal and multilineage differentiation properties, as well as phenotypic and molecular evidence of progressive maturation in culture. Together, these findings provide a stepwise improvement in human iPSC differentiation protocols and offer a framework for manipulating intrinsic cellular cues to enable de novo generation of human HSPCs with functionality in vivo.


Assuntos
Hemangioblastos , Células-Tronco Pluripotentes Induzidas , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Ativinas/metabolismo , Diferenciação Celular , Transdução de Sinais
8.
bioRxiv ; 2023 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-36865308

RESUMO

Several differentiation protocols enable the emergence of hematopoietic stem and progenitor cells (HSPCs) from human induced pluripotent stem cells (iPSCs), yet optimized schemes to promote the development of HSPCs with self-renewal, multilineage differentiation and engraftment potential are lacking. To improve human iPSC differentiation methods, we modulated WNT, Activin/Nodal and MAPK signaling pathways by stage-specific addition of small molecule regulators CHIR99021, SB431542 and LY294002, respectively, and measured the impact on hematoendothelial formation in culture. Manipulation of these pathways provided a synergy sufficient to enhance formation of arterial hemogenic endothelium (HE) relative to control culture conditions. Importantly, this approach significantly increased production of human HSPCs with self-renewal and multilineage differentiation properties, as well as phenotypic and molecular evidence of progressive maturation in culture. Together, these findings provide a stepwise improvement in human iPSC differentiation protocols and offer a framework for manipulating intrinsic cellular cues to enable de novo generation of human HSPCs with functionality in vivo . Significance Statement: The ability to produce functional HSPCs by differentiation of human iPSCs ex vivo holds enormous potential for cellular therapy of human blood disorders. However, obstacles still thwart translation of this approach to the clinic. In keeping with the prevailing arterial-specification model, we demonstrate that concurrent modulation of WNT, Activin/Nodal and MAPK signaling pathways by stage-specific addition of small molecules during human iPSC differentiation provides a synergy sufficient to promote arterialization of HE and production of HSPCs with features of definitive hematopoiesis. This simple differentiation scheme provides a unique tool for disease modeling, in vitro drug screening and eventual cell therapies.

9.
Cells ; 12(2)2023 01 14.
Artigo em Inglês | MEDLINE | ID: mdl-36672255

RESUMO

The ability to manufacture human hematopoietic stem cells (HSCs) in the laboratory holds enormous promise for cellular therapy of human blood diseases. Several differentiation protocols have been developed to facilitate the emergence of HSCs from human pluripotent stem cells (PSCs). Most approaches employ a stepwise addition of cytokines and morphogens to recapitulate the natural developmental process. However, these protocols globally lack clinical relevance and uniformly induce PSCs to produce hematopoietic progenitors with embryonic features and limited engraftment and differentiation capabilities. This review examines how key intrinsic cues and extrinsic environmental inputs have been integrated within human PSC differentiation protocols to enhance the emergence of definitive hematopoiesis and how advances in genomics set the stage for imminent breakthroughs in this field.


Assuntos
Células-Tronco Pluripotentes , Humanos , Células-Tronco Hematopoéticas , Diferenciação Celular , Citocinas
10.
Biochem Genet ; 61(4): 1528-1547, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-36658310

RESUMO

Lung adenocarcinoma (LUAD) is a common malignancy. Many studies have shown that LUAD is resistant to gemcitabine chemotherapy, resulting in poor treatment outcomes in patients. We designed this study to reveal influences of hsa-miR-195-5p/E2F7/CEP55 axis on gemcitabine resistance and autophagy of LUAD cells. The expression data of LUAD-related mRNAs were downloaded from TCGA-LUAD database for differential expression analysis. The bioinformatics databases (hTFtarget, starBase and TargetScan) were used to predict the upstream and downstream regulatory molecules of E2F7. Then the binding relationships between E2F7 and regulatory molecules were verified by ChIP and dual-luciferase reporter assay. qRT-PCR and western blot were used to detect the mRNA and protein levels of has-miR-195-5p, E2F7, and CEP55. CCK-8 assay was used to analyze the half-maximal inhibitory concentration (IC50) and cell proliferation ability of LUAD cells after gemcitabine treatment. Apoptosis was detected by flow cytometry. Apoptosis/autophagy markers and LC3 aggregation were detected by western blot and immunofluorescence, respectively. Finally, the mouse transplantation model was constructed to verify the regulation mechanism in vivo. In LUAD cells and tissues, E2F7 and CEP55 were highly expressed, while has-miR-195-5p was relatively less expressed. The ChIP or dual-luciferase assays demonstrated the binding relationships of E2F7 to the CEP55 promoter region and has-miR-195-5p to the 3'-UTR of E2F7. Cell experiments demonstrated that overexpression of hsa-miR-195-5p stimulated LUAD cell apoptosis and inhibited autophagy and gemcitabine resistance, while further overexpression E2F7/CEP55 could reverse the impact by hsa-miR-195-5p overexpression. In vivo experiments identified that hsa-miR-195-5p/E2F7/CEP55 axis constrained the growth of LUAD tumor. Hsa-miR-195-5p promoted apoptosis, repressed proliferation, and autophagy via E2F7/CEP55 and reduced gemcitabine resistance in LUAD, indicating that hsa-miR-195-5p/E2F7/CEP55 may be a novel target for LUAD.


Assuntos
Adenocarcinoma de Pulmão , Neoplasias Pulmonares , MicroRNAs , Animais , Camundongos , Gencitabina , Adenocarcinoma de Pulmão/genética , MicroRNAs/genética , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Regiões 3' não Traduzidas , Autofagia , Proteínas de Ciclo Celular , Proliferação de Células , Modelos Animais de Doenças , Regulação Neoplásica da Expressão Gênica , Linhagem Celular Tumoral
11.
Microbes Infect ; 25(4): 105082, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36539010

RESUMO

Available COVID-19 vaccine only provide protection for a limited time due in part to the rapid emergence of viral variants with spike protein mutations, necessitating the generation of new vaccines to combat SARS-CoV-2. Two serologically distinct replication-defective chimpanzee-origin adenovirus (Ad) vectors (AdC) called AdC6 and AdC7 expressing early SARS-CoV-2 isolate spike (S) or nucleocapsid (N) proteins, the latter expressed as a fusion protein within herpes simplex virus glycoprotein D (gD), were tested individually or as a mixture in a hamster COVID-19 SARS-CoV-2 challenge model. The S protein expressing AdC (AdC-S) vectors induced antibodies including those with neutralizing activity that in part cross-reacted with viral variants. Hamsters vaccinated with the AdC-S vectors were protected against serious disease and showed accelerated recovery upon SARS-CoV-2 challenge. Protection was enhanced if AdC-S vectors were given together with the AdC vaccines that expressed the gD N fusion protein (AdC-gDN). In contrast hamsters that just received the AdC-gDN vaccines showed only marginal lessening of symptoms compared to control animals. These results indicate that immune response to the N protein that is less variable than the S protein may potentiate and prolong protection achieved by the currently used S protein based genetic COVID-19 vaccines.


Assuntos
COVID-19 , Animais , Cricetinae , Humanos , COVID-19/prevenção & controle , SARS-CoV-2/genética , Vacinas contra COVID-19/genética , Pan troglodytes , Adenoviridae/genética , Nucleocapsídeo , Imunização , Anticorpos Antivirais , Anticorpos Neutralizantes
12.
Front Med (Lausanne) ; 10: 1313503, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38188337

RESUMO

Background: Lymphangioleiomyomatosis (LAM) is a rare, gradually advancing tumor of unknown origin. It is distinguished by the anomalous proliferation of pulmonary smooth muscle cells and predominantly manifests in women of childbearing age. In this study, we aim to present a noteworthy case of LAM accompanied by lymphangioleiomyoma in the retroperitoneal space during pregnancy, a scenario susceptible to misdiagnosis. Case presentation: A 31-year-old woman, facing an unintended pregnancy, presented during the 13th week with a cystic-solid mass exhibiting abundant blood signals in the pelvic cavity, as revealed by routine obstetrical ultrasound. Concurrently, her chest CT disclosed diffuse thin-walled cavities in both lungs. Despite the absence of clinical symptoms, the patient abandoned pregnancy and underwent a complete curettage. However, 24 days post-operation, she was readmitted for further assessment, revealing an enlargement of the mass encompassing the abdominal aorta and inferior vena cava, along with compression on the middle and lower segments of the ureter. After a multi-disciplinary discussion and patient explanation, an exploratory laparotomy was performed, resulting in the complete removal of the tumor. Intraoperative pathological examination and immunohistochemical staining indicated a retroperitoneal mass devoid of malignant evidence. The comprehensive morphologic and immunophenotypic features substantiated the diagnosis of lymphangioleiomyomatosis. The postoperative course was uneventful, culminating in the patient's discharge. Conclusion: The consideration of Lymphangioleiomyomatosis (LAM) with a retroperitoneal tumor is crucial in the differential diagnosis of pelvic and abdominal masses. The preoperative diagnosis of this tumor poses a challenge, as ultrasound or CT scans may not yield definitive results. Accurate diagnosis necessitates not only a pathological examination of the retroperitoneal mass but also the correlation with the patient's chest High-Resolution Computed Tomography (HRCT) findings and corresponding clinical manifestations. Optimal management involves radical surgery, with surgeons comprehensively factoring in both fetal and maternal conditions when formulating a treatment plan.

13.
Sci Rep ; 12(1): 16828, 2022 10 07.
Artigo em Inglês | MEDLINE | ID: mdl-36207435

RESUMO

To evaluate the prognostic role of the preoperative plasma lipid profile, including triglycerides (TG), total cholesterol (TC), low-density lipoprotein cholesterol (LDL-C), and high-density lipoprotein cholesterol (HDL-C) in patients with lung squamous cell carcinoma (LUSC) who underwent complete resection. Clinical data, including preoperative plasma profile levels, were retrospectively collected and reviewed in 300 patients with LUSC who underwent radical lung resection between 2016 and 2017. The overall survival (OS) and disease-free survival (DFS) were assessed by the Kaplan-Meier method and the Cox proportional hazards regression model. TG ≤ 1.35, HDL-C ≤ 1.17, and LDL-C ≤ 2.32 were deemed as independent preoperative risk factors for OS, and HDL-C ≤ 1.17 was an independent preoperative risk factor for DFS. In the multivariate analyses involving OS and DFS, a decreased HDL-C level was significantly associated with worse OS (HR, 0.546; 95% CI, 0.380-0.784, P = 0.001) and DFS (HR, 0.644; 95% CI, 0.422-0.981, P = 0.041). Additionally, an increased TG (HR, 0.546; 95% CI, 0.366-0.814, P = 0.003) or LDL-C (HR, 0.652; 95% CI, 0.456-0.933, P = 0.019) level was significantly associated with better OS. In patients with LUSC, decreased levels of HDL-C may predict worse outcomes for both DFS and OS, while increased TG or LDL-C levels may predict better OS.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Carcinoma de Células Escamosas , Neoplasias Pulmonares , Carcinoma de Células Escamosas/cirurgia , HDL-Colesterol , LDL-Colesterol , Humanos , Lipoproteínas HDL , Pulmão , Neoplasias Pulmonares/cirurgia , Estudos Retrospectivos , Triglicerídeos
14.
Front Psychol ; 13: 928331, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36092055

RESUMO

Daka destinations refer to tagging one's visit to a popular destination by posting on social media. As a novel tourism concept derived from digital media in the post-pandemic era, Daka destinations have become a major option for potential tourists; thus, investigating tourist intentions toward them is of utmost significance to tourism recovery. Based on the viewpoints of information sources of Daka destinations, tourism motivations, and self-construction, this study investigates the research framework of potential tourism intentions through three scenarios. The findings revealed the following: (i) Different information sources have different stimuli for potential tourists, and WeChat Moments exerted a positive impact on tourism intention because of credibility; tourism bloggers from Weibo exert a more significant positive impact on tourism intentions of potential tourists because of professionalism. (ii) Considering the credibility of WeChat Moments, the extrinsic motivation of potential tourists exerted a more significant impact on tourism intentions; regarding professional tourism bloggers, the intrinsic motivation of potential tourists exerted a more significant impact on tourism intention. (iii) Regarding the credibility of WeChat Moments, dependent self-construction potential tourists with extrinsic motivation exerted a more significant impact on tourism intention. Regarding tourism bloggers with high professionalism, independent self-construal potential tourists with intrinsic motivation exerted a more significant impact on tourism intention. This study enriches the research mechanism of the formation path of potential tourists' tourism intention, extends the self-construction theory to the research field of using social media to collect Daka destinations tourism information, and provides a reference to subsequent research on potential tourists' tourism intention.

16.
JCI Insight ; 7(15)2022 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-35727635

RESUMO

Long COVID, a type of post-acute sequelae of SARS-CoV-2 (PASC), has been associated with sustained elevated levels of immune activation and inflammation. However, the mechanisms that drive this inflammation remain unknown. Inflammation during acute coronavirus disease 2019 could be exacerbated by microbial translocation (from the gut and/or lung) to blood. Whether microbial translocation contributes to inflammation during PASC is unknown. We did not observe a significant elevation in plasma markers of bacterial translocation during PASC. However, we observed higher levels of fungal translocation - measured as ß-glucan, a fungal cell wall polysaccharide - in the plasma of individuals experiencing PASC compared with those without PASC or SARS-CoV-2-negative controls. The higher ß-glucan correlated with higher inflammation and elevated levels of host metabolites involved in activating N-methyl-d-aspartate receptors (such as metabolites within the tryptophan catabolism pathway) with established neurotoxic properties. Mechanistically, ß-glucan can directly induce inflammation by binding to myeloid cells (via Dectin-1) and activating Syk/NF-κB signaling. Using a Dectin-1/NF-κB reporter model, we found that plasma from individuals experiencing PASC induced higher NF-κB signaling compared with plasma from negative controls. This higher NF-κB signaling was abrogated by piceatannol (Syk inhibitor). These data suggest a potential targetable mechanism linking fungal translocation and inflammation during PASC.


Assuntos
COVID-19 , beta-Glucanas , COVID-19/complicações , Humanos , Inflamação , Lectinas Tipo C/metabolismo , NF-kappa B/metabolismo , SARS-CoV-2 , Quinase Syk , Síndrome de COVID-19 Pós-Aguda
17.
Front Oncol ; 12: 873725, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35574296

RESUMO

Cervical cancer (CC) is one of the most common malignant tumors of the female reproductive system. And the immune system disorder in patients results in an increasing incidence rate and mortality rate. Pyroptosis is an immune system-related programmed cell death pathway that produces systemic inflammation by releasing pro-inflammatory intracellular components. However, the diagnostic significance of pyroptosis-related genes (PRGs) in CC is still unclear. Therefore, we identified 52 PRGs from the TCGA database and screened three Differentially Expressed Pyroptosis-Related Genes (DEPRGs) in the prognosis of cervical cancer: CHMP4C, GZMB, TNF. The least absolute shrinkage and selection operator (LASSO) regression analysis and multivariate COX regression analysis were then used to construct a gene panel based on the three prognostic DEPRGs. The patients were divided into high-and low-risk groups based on the median risk score of the panel. According to the Kaplan-Meier curve, there was a substantial difference in survival rates between the two groups, with the high-risk group's survival rate being significantly lower than the low-risk group's. The PCA and t-SNE analyses revealed that the panel was able to differentiate patients into high-and low-risk groups. The area under the ROC curve (AUC) shows that the prognostic panel has high sensitivity and specificity. The risk score could then be employed as an independent prognostic factor using univariate and multivariate COX regression analyses paired with clinical data. The analyses of GO and KEGG functional enrichment of differentially expressed genes (DEGs) in the high-and low-risk groups revealed that these genes were primarily engaged in immune response and inflammatory cell chemotaxis. To illustrate immune cell infiltration in CC patients further, we used ssGSEA to compare immune-related cells and immune pathway activation between the high-and low-risk groups. The link between three prognostic DEPRGs and immune-related cells was still being discussed after evaluating immune cell infiltration in the TCGA cohort with "CIBERSORT." In addition, the GEPIA database and qRT-PCR analysis were used to verify the expression levels of prognostic DEPRGs. In conclusion, PRGs are critical in tumor immunity and can be utilized to predict the prognosis of CC.

18.
J Exp Clin Cancer Res ; 41(1): 165, 2022 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-35513835

RESUMO

BACKGROUND: Circular RNAs (circRNAs) are noncoding RNAs with stable structures with high expression and tissue-specific expression. Studies have shown that circRNA dysregulation is closely related to the progression of tumours. However, the function and regulatory mechanism of most circRNAs in cervical cancer are still unclear.   METHODS: CircRNAs related to cervical cancer were screened through the Gene Expression Omnibus (GEO) database. qRT-PCR was used to verify the expression of circ_0087429 in cervical cancer tissues and cells. Then, in vivo and in vitro experiments were conducted to evaluate the role of circ_0087429 in the progression of cervical cancer. The role of the circ_0087429/miR-5003-3p/osteoglycin (OGN) axis in the epithelial to mesenchymal transition (EMT) was confirmed by rescue experiments, fluorescence in situ hybridization, luciferase reporter assays, immunofluorescence staining and western blotting. The inhibitory effect of Eukaryotic initiation factor 4A-III (EIF4A3) on the biogenesis of circ_0087429 was verified by RNA immunoprecipitation (RIP) assays and qRT-PCR. RESULTS: circ_0087429 is significantly downregulated in cervical cancer tissues and cells and negatively correlated with International Federation of Gynecology and Obstetrics (FIGO) staging and lymphatic metastasis in cervical cancer patients. circ_0087429 can significantly inhibit the proliferation, migration, invasion and angiogenesis of cervical cancer in vitro and tumour growth and metastasis in vivo. OGN is significantly downregulated in cervical cancer tissues and cells. circ_0087429 can upregulate the expression of OGN by competitively binding with miR-5003-3p, thereby reversing EMT and inhibiting the progression of cervical cancer. EIF4A3 can inhibit circ_0087429 expression by binding to its flanking regions. CONCLUSIONS: As a tumour suppressor, circ_0087429 regulated by EIF4A3 can reverse EMT and inhibit the progression of cervical cancer through the miR-5003-3p/OGN axis. It is expected to become a potential target for the treatment of cervical cancer.


Assuntos
MicroRNAs , Neoplasias do Colo do Útero , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células/genética , RNA Helicases DEAD-box/genética , Transição Epitelial-Mesenquimal/genética , Fator de Iniciação 4A em Eucariotos/genética , Fator de Iniciação 4A em Eucariotos/metabolismo , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Hibridização in Situ Fluorescente , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , RNA Circular/genética , Regulação para Cima , Neoplasias do Colo do Útero/genética
19.
Front Mol Biosci ; 9: 769032, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35174213

RESUMO

Ovarian cancer (OV) is an epithelial malignancy that intrigues people for its high mortality and lack of efficient treatment. Chemokine-like factor (CKLF)-like MARVEL transmembrane domain containing 6 (CMTM6) can be observed in various cancers, but its part in OV remains little known. Hence, the prognostic value and underlying mechanism of CMTM6 in OV were preliminarily evaluated. Here, we determined that CMTM6 expression was higher than that in normal controls. However, the upregulation of CMTM6 was associated with better prognosis. GSEA results suggested that CMTM6 is involved in the immune-related and metabolism-related pathways. GO/KEGG analysis of CMTM6 coexpressed genes was performed to survey the possible regulatory roles of CMTM6 in OV. Subsequently, CMTM6 expression was positively correlated with the infiltration levels of immune cells and the expression of diverse immune cell marker sets. Importantly, CMTM6 may influence prognosis partially by regulating immune infiltration in OV. Last, copy number variations (CNVs) and DNA methylation might prompt the abnormal CMTM6 expression in OV. In conclusion, CMTM6 can serve as a novel prognostic biomarker in patients with OV.

20.
Biomed Res Int ; 2021: 8849415, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34337056

RESUMO

Hepatocellular carcinoma (HCC) is a common malignant tumor of the digestive system, and its early asymptomatic characteristic increases the difficulty of diagnosis and treatment. This study is aimed at obtaining some novel biomarkers with diagnostic and prognostic meaning and may find out potential therapeutic targets for HCC. We screen differentially expressed genes (DEGs) from the HCC gene expression profile GSE14520 using GEO2R. Gene Ontology (GO) analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis were conducted by using the clusterProfiler software while a protein-protein interaction (PPI) network was performed based on the STRING database. Then, prognosis analysis of hub genes was conducted using The Cancer Genome Atlas (TCGA) database. Quantitative real-time polymerase chain reaction (qRT-PCR) was utilized to further verify the expression of hub genes and explore the correlation between gene expression and clinicopathological parameters. A total of 1053 DEGs were captured, containing 497 upregulated genes and 556 downregulated genes. GO and KEGG analysis indicated that the downregulated DEGs were mainly enriched in the fatty acid catabolic process while upregulated DEGs were primarily enriched in the cell cycle. Simultaneously, ten hub genes (CYP3A4, UGT1A6, AOX1, UGT1A4, UGT2B15, CDK1, CCNB1, MAD2L1, CCNB2, and CDC20) were identified by the PPI network. Five prognosis-related hub genes (CYP3A4, CDK1, CCNB1, MAD2L1, and CDC20) were uncovered by the survival analysis based on TCGA database. The ten hub genes were further validated by qRT-PCR using samples obtained from our hospital. The prognosis-related hub genes such as CYP3A4, CDK1, CCNB1, MAD2L1, and CDC20 could be considered potential diagnosis biomarkers and prognosis targets for HCC. We also use Oncomine for further verification, and we found CCNB1, CCNB2, CDK1, and CYP3A4 which were highly expressed in HCC. Meanwhile, CCNB1, CCNB2, and CDK1 are highly expressed in almost all cancer types, which may play an important role in cancer. Still, further functional study should be conducted to explore the underlying mechanism and biological effect in the near future.


Assuntos
Carcinoma Hepatocelular/genética , Biologia Computacional , Redes Reguladoras de Genes , Neoplasias Hepáticas/genética , Transdução de Sinais/genética , Adulto , Idoso , Regulação para Baixo/genética , Feminino , Regulação Neoplásica da Expressão Gênica , Ontologia Genética , Humanos , Masculino , Pessoa de Meia-Idade , Prognóstico , Reprodutibilidade dos Testes , Análise de Sobrevida , Transcriptoma , Regulação para Cima/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA