Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Brain Connect ; 14(2): 84-91, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38264988

RESUMO

Purpose: Growth hormone deficiency (GHD) refers to the partial or complete lack of growth hormone. Short stature and slow growth are characteristic of patients with GHD. Previous neuroimaging studies have suggested that GHD may cause cognitive and behavioral impairments in patients. Resting-state networks (RSNs) are regions of the brain that exhibit synchronous activity and are closely related to our cognition and behavior. Therefore, the purpose of the current study was to explore cognitive and behavioral abnormalities in children with GHD by investigating changes in RSNs. Methods: Resting-state functional magnetic resonance imaging (rs-fMRI) data of 26 children with GHD and 15 healthy controls (HCs) were obtained. Independent component analysis was used to identify seven RSNs from rs-fMRI data. Group differences in RSNs were estimated using two-sample t-tests. Correlation analysis was employed to investigate the associations among the areas of difference and clinical measures. Results: Compared with HCs, children with GHD had significant differences in the salience network (SN), default mode network (DMN), language network (LN), and sensorimotor network (SMN). Moreover, within the SN, the functional connectivity (FC) value of the right posterior supramarginal gyrus was negatively correlated with the adrenocorticotropic hormone and the FC value of the left anterior inferior parietal gyrus was positively correlated with insulin-like growth factor 1. Conclusions: These results suggest that alterations in RSNs may account for abnormal cognition and behavior in children with GHD, such as decreased motor function, language withdrawal, anxiety, and social anxiety. These findings provide neuroimaging support for uncovering the pathophysiological mechanisms of GHD in children. Impact statement Children with growth hormone deficiency (GHD) generally experience cognitive and behavioral abnormalities. However, there are few neuroimaging studies on children with GHD. Moreover, prior research has not investigated the aberrant brain function in patients with GHD from the perspective of brain functional networks. Therefore, this study employed the independent component analysis method to investigate alterations within seven commonly observed resting-state networks due to GHD. The results showed that children with GHD had significant differences in the salience network, default mode network, language network, and sensorimotor network. This provides neuroimaging support for revealing the pathophysiological mechanisms of GHD in children.


Assuntos
Mapeamento Encefálico , Encéfalo , Criança , Humanos , Encéfalo/diagnóstico por imagem , Mapeamento Encefálico/métodos , Imageamento por Ressonância Magnética/métodos , Cognição , Hormônio do Crescimento
2.
Neuroscience ; 530: 183-191, 2023 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-37394224

RESUMO

Abnormal spontaneous neural activity in children with growth hormone deficiency (GHD) has been found in previous resting-state functional magnetic resonance imaging (rs-fMRI) studies. Nevertheless, the spontaneous neural activity of GHD in different frequency bands is still unclear. Here, we combined rs-fMRI and regional homogeneity (ReHo) methods to analyze the spontaneous neural activity of 26 GHD children and 15 healthy controls (HCs) with age- and sex-matching in four frequency bands: slow-5 (0.014-0.031 Hz), slow-4 (0.031-0.081 Hz), slow-3 (0.081-0.224 Hz), and slow-2 (0.224-0.25 Hz). In the slow-5 band, GHD children compared with HCs displayed higher ReHo in the left dorsolateral part of the superior frontal gyrus, triangular part of the inferior frontal gyrus, precentral gyrus and middle frontal gyrus, and right angular gyrus, while lower ReHo in the right precentral gyrus, and several medial orbitofrontal regions. In the slow-4 band, GHD children relative to HCs revealed increased ReHo in the right middle temporal gyrus, whereas reduced ReHo in the left superior parietal gyrus, right middle occipital gyrus, and bilateral medial parts of the superior frontal gyrus. In the slow-2 band, compared with HCs, GHD children showed increased ReHo in the right anterior cingulate gyrus, and several prefrontal regions, while decreased ReHo in the left middle occipital gyrus, and right fusiform gyrus and anterior cingulate gyrus. Our findings demonstrate that regional brain activity in GHD children exhibits extensive abnormalities, and these abnormalities are related to specific frequency bands, which may provide bases for understanding its pathophysiology significance.


Assuntos
Mapeamento Encefálico , Encéfalo , Humanos , Criança , Encéfalo/diagnóstico por imagem , Mapeamento Encefálico/métodos , Imageamento por Ressonância Magnética/métodos , Córtex Cerebral , Hormônio do Crescimento
3.
Sci Rep ; 11(1): 334, 2021 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-33432029

RESUMO

Growth hormone deficiency (GHD) is a common developmental disorder in children characterized by low levels of growth hormone secretion, short stature, and multiple cognitive and behavioral problems, including hyperactivity, anxiety, and depression. However, the pathophysiology of this disorder remains unclear. In order to investigate abnormalities of brain functioning in children with GHD, we preformed functional magnetic resonance imaging and regional homogeneity (ReHo) analysis in 26 children with GHD and 15 age- and sex-matched healthy controls (HCs) in a resting state. Compared with HCs, children with GHD exhibited increased ReHo in the left putamen and decreased ReHo in the right precentral gyrus, reflecting a dysfunction of inhibitory control. Decreased ReHo was also identified in the orbital parts of the bilateral superior frontal gyrus and the medial part of the left superior frontal gyrus, a finding that correlated with the inappropriate anxiety and depression that are observed in this patient population. Our results provide imaging evidence of potential pathophysiologic mechanisms for the cognitive and behavioral abnormalities of children with GHD.


Assuntos
Encéfalo/fisiopatologia , Hormônio do Crescimento/deficiência , Descanso/fisiologia , Estudos de Casos e Controles , Criança , Feminino , Humanos , Masculino
4.
Neurosci Lett ; 742: 135546, 2021 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-33290838

RESUMO

Growth hormone deficiency (GHD) is a developmental disorder caused by the partial or complete deficiency of growth hormone secreted by the pituitary gland, or its receptor. Patients with GHD are characterized by short stature, slow growth, and certain cognitive and behavioral abnormalities. Previous behavioral and neuroimaging studies indicate that GHD might affect the brain functional activity associated with cognitive and behavioral abilities. We thus investigated the spontaneous neural activity in children with GHD using amplitude of low-frequency fluctuation (ALFF) analysis. ALFF was calculated based on resting-state functional magnetic resonance imaging (rs-fMRI) data in 26 children with GHD and 15 age- and sex-matched healthy controls (HCs). Comparative analysis revealed that the ALFF of the right lingual gyrus and angular gyrus were significantly increased, while the ALFF of the right dorsolateral superior frontal gyrus, the left postcentral gyrus, superior parietal gyrus and middle temporal gyrus were significantly decreased in children with GHD relative to HCs. These findings support the presence of abnormal brain functional activity in children with GHD, which may account for the abnormal cognition and behavior, such as aggression, somatic complaints, attention deficits, and language withdrawal. This study provides imaging evidence for future studies on the pathophysiological mechanisms of abnormal behavior and cognition in children with GHD.


Assuntos
Ondas Encefálicas/fisiologia , Encéfalo/diagnóstico por imagem , Encéfalo/metabolismo , Hormônio do Crescimento Humano/deficiência , Imageamento por Ressonância Magnética/métodos , Descanso/fisiologia , Criança , Feminino , Hormônio do Crescimento Humano/sangue , Humanos , Masculino
5.
Brain Imaging Behav ; 13(2): 408-420, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29611075

RESUMO

Brain metastases are the most prevalent cerebral tumors. Resting state networks (RSNs) are involved in multiple perceptual and cognitive functions. Therefore, precisely localizing multiple RSNs may be extremely valuable before surgical resection of metastases, to minimize neurocognitive impairments. Here we aimed to investigate the reliability of independent component analysis (ICA) for localizing multiple RSNs from resting-state functional MRI (rs-fMRI) data in individual patients, and further evaluate lesion-related spatial shifts of the RSNs. Twelve patients with brain metastases and 14 healthy controls were recruited. Using an improved automatic component identification method, we successfully identified seven common RSNs, including: the default mode network (DMN), executive control network (ECN), dorsal attention network (DAN), language network (LN), sensorimotor network (SMN), auditory network (AN) and visual network (VN), in both individual patients and controls. Moreover, the RSNs in the patients showed a visible spatial shift compared to those in the controls, and the spatial shift of some regions was related to the tumor location, which may reflect a complicated functional mechanism - functional disruptions and reorganizations - caused by metastases. Besides, higher cognitive networks (DMN, ECN, DAN and LN) showed significantly larger spatial shifts than perceptual networks (SMN, AN and VN), supporting a functional dichotomy between the two network groups even in pathologic alterations associated with metastases. Overall, our findings provide evidence that ICA is a promising approach for presurgical localization of multiple RSNs from rs-fMRI data in individual patients. More attention should be paid to the spatial shifts of the RSNs before surgical resection.


Assuntos
Mapeamento Encefálico/métodos , Neoplasias Encefálicas/fisiopatologia , Encéfalo/fisiopatologia , Imageamento por Ressonância Magnética/métodos , Adulto , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Reprodutibilidade dos Testes
6.
Brain Imaging Behav ; 12(5): 1239-1250, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-29134612

RESUMO

White matter lesions (WMLs) have been associated with cognitive and motor decline. Resting state networks (RSNs) are spatially coherent patterns in the human brain and their interactions sustain our daily function. Therefore, investigating the altered intra- and inter-network connectivity among the RSNs may help to understand the association of WMLs with impaired cognitive and motor function. Here, we assessed alterations in functional connectivity patterns based on six well-defined RSNs-the default mode network (DMN), dorsal attention network (DAN), frontal-parietal control network (FPCN), auditory network (AN), sensory motor network (SMN) and visual network (VN)-in 15 patients with ischemic WMLs and 15 controls. In the patients, Spearman's correlation analysis was further performed between these alterations and cognitive test scores, including Mini-Mental State Examination (MMSE) and Montreal Cognitive Assessment (MoCA) scores. Our results showed wide alterations of inter-network connectivity mainly involving the SMN, DMN, FPCN and DAN, and some alterations correlated with cognitive test scores in the patients. The reduced functional connectivities in the SMN-AN, SMN-VN, FPCN-AN, DAN-VN pairs may account for the cognitive and motor decline in patients with ischemic WMLs, while the increased functional connectivities in the DMN-AN, DMN-FPCN and DAN-FPCN pairs may reflect a functional network reorganization after damage to white matter. It is unexpected that altered intra-network connectivities were found within the AN and VN, which may explain the impairments in verbal fluency and information retrieval associated with WMLs. This study highlights the importance of functional connectivity in understanding how WMLs influence cognitive and behavior dysfunction.


Assuntos
Isquemia Encefálica/diagnóstico por imagem , Isquemia Encefálica/fisiopatologia , Encéfalo/diagnóstico por imagem , Encéfalo/fisiopatologia , Cognição , Idoso , Isquemia Encefálica/psicologia , Mapeamento Encefálico , Cognição/fisiologia , Feminino , Humanos , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Vias Neurais/diagnóstico por imagem , Vias Neurais/fisiopatologia , Descanso , Substância Branca/fisiopatologia
7.
Medicine (Baltimore) ; 95(36): e4625, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27603353

RESUMO

White matter lesions (WMLs) are frequently detected in elderly people. Previous structural and functional studies have demonstrated that WMLs are associated with cognitive and motor decline. However, the underlying mechanism of how WMLs lead to cognitive decline and motor disturbance remains unclear. We used functional connectivity density mapping (FCDM) to investigate changes in brain functional connectivity in 16 patients with ischemic WMLs and 13 controls. Both short- and long-range FCD maps were computed, and group comparisons were performed between the 2 groups. A correlation analysis was further performed between regions with altered FCD and cognitive test scores (Mini-Mental State Examination [MMSE] and Montreal Cognitive Assessment [MoCA]) in the patient group. We found that patients with ischemic WMLs showed reduced short-range FCD in the temporal cortex, primary motor cortex, and subcortical region, which may account for inadequate top-down attention, impaired motor, memory, and executive function associated with WMLs. The positive correlation between primary motor cortex and MoCA scores may provide evidence for the influences of cognitive function on behavioral performance. The inferior parietal cortex exhibited increased short-range FCD, reflecting a hyper bottom-up attention to compensate for the inadequate top-down attention for language comprehension and information retrieval in patients with WMLs. Moreover, the prefrontal and primary motor cortex showed increased long-range FCD and the former positively correlated with MoCA scores, which may suggest a strategy of cortical functional reorganization to compensate for motor and executive deficits. Our findings provide new insights into how WMLs cause cognitive and motor decline from cortical functional connectivity perspective.


Assuntos
Mapeamento Encefálico/métodos , Leucoencefalopatias/diagnóstico por imagem , Idoso , Cognição/fisiologia , Feminino , Humanos , Leucoencefalopatias/fisiopatologia , Masculino , Pessoa de Meia-Idade , Movimento
8.
PLoS One ; 8(5): e63850, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23717498

RESUMO

Psychogenic non-epileptic seizures (PNES) are paroxysmal behaviors that resemble epileptic seizures but lack abnormal electrical activity. Recent studies suggest aberrant functional connectivity involving specific brain regions in PNES. Little is known, however, about alterations of topological organization of whole-brain functional and structural connectivity networks in PNES. We constructed functional connectivity networks from resting-state functional MRI signal correlations and structural connectivity networks from diffusion tensor imaging tractography in 17 PNES patients and 20 healthy controls. Graph theoretical analysis was employed to compute network properties. Moreover, we investigated the relationship between functional and structural connectivity networks. We found that PNES patients exhibited altered small-worldness in both functional and structural networks and shifted towards a more regular (lattice-like) organization, which could serve as a potential imaging biomarker for PNES. In addition, many regional characteristics were altered in structural connectivity network, involving attention, sensorimotor, subcortical and default-mode networks. These regions with altered nodal characteristics likely reflect disease-specific pathophysiology in PNES. Importantly, the coupling strength of functional-structural connectivity was decreased and exhibited high sensitivity and specificity to differentiate PNES patients from healthy controls, suggesting that the decoupling strength of functional-structural connectivity might be an important characteristic reflecting the mechanisms of PNES. This is the first study to explore the altered topological organization in PNES combining functional and structural connectivity networks, providing a new way to understand the pathophysiological mechanisms of PNES.


Assuntos
Encéfalo/fisiopatologia , Epilepsia/fisiopatologia , Rede Nervosa/fisiopatologia , Vias Neurais/fisiopatologia , Adulto , Biomarcadores/metabolismo , Encéfalo/metabolismo , Mapeamento Encefálico/métodos , Epilepsia/metabolismo , Feminino , Humanos , Imageamento por Ressonância Magnética/métodos , Masculino , Rede Nervosa/metabolismo , Vias Neurais/metabolismo , Adulto Jovem
9.
Med Image Anal ; 17(3): 365-74, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23422254

RESUMO

A great improvement to the insight on brain function that we can get from fMRI data can come from effective connectivity analysis, in which the flow of information between even remote brain regions is inferred by the parameters of a predictive dynamical model. As opposed to biologically inspired models, some techniques as Granger causality (GC) are purely data-driven and rely on statistical prediction and temporal precedence. While powerful and widely applicable, this approach could suffer from two main limitations when applied to BOLD fMRI data: confounding effect of hemodynamic response function (HRF) and conditioning to a large number of variables in presence of short time series. For task-related fMRI, neural population dynamics can be captured by modeling signal dynamics with explicit exogenous inputs; for resting-state fMRI on the other hand, the absence of explicit inputs makes this task more difficult, unless relying on some specific prior physiological hypothesis. In order to overcome these issues and to allow a more general approach, here we present a simple and novel blind-deconvolution technique for BOLD-fMRI signal. In a recent study it has been proposed that relevant information in resting-state fMRI can be obtained by inspecting the discrete events resulting in relatively large amplitude BOLD signal peaks. Following this idea, we consider resting fMRI as 'spontaneous event-related', we individuate point processes corresponding to signal fluctuations with a given signature, extract a region-specific HRF and use it in deconvolution, after following an alignment procedure. Coming to the second limitation, a fully multivariate conditioning with short and noisy data leads to computational problems due to overfitting. Furthermore, conceptual issues arise in presence of redundancy. We thus apply partial conditioning to a limited subset of variables in the framework of information theory, as recently proposed. Mixing these two improvements we compare the differences between BOLD and deconvolved BOLD level effective networks and draw some conclusions.


Assuntos
Mapeamento Encefálico/métodos , Encéfalo/fisiologia , Conectoma/métodos , Interpretação de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética/métodos , Rede Nervosa/fisiologia , Neurônios/fisiologia , Algoritmos , Humanos , Aumento da Imagem/métodos , Vias Neurais/fisiologia , Reconhecimento Automatizado de Padrão/métodos , Reprodutibilidade dos Testes , Descanso/fisiologia , Sensibilidade e Especificidade
10.
PLoS One ; 6(10): e26596, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-22028917

RESUMO

Exploring topological properties of human brain network has become an exciting topic in neuroscience research. Large-scale structural and functional brain networks both exhibit a small-world topology, which is evidence for global and local parallel information processing. Meanwhile, resting state networks (RSNs) underlying specific biological functions have provided insights into how intrinsic functional architecture influences cognitive and perceptual information processing. However, topological properties of single RSNs remain poorly understood. Here, we have two hypotheses: i) each RSN also has optimized small-world architecture; ii) topological properties of RSNs related to perceptual and higher cognitive processes are different. To test these hypotheses, we investigated the topological properties of the default-mode, dorsal attention, central-executive, somato-motor, visual and auditory networks derived from resting-state functional magnetic resonance imaging (fMRI). We found small-world topology in each RSN. Furthermore, small-world properties of cognitive networks were higher than those of perceptual networks. Our findings are the first to demonstrate a topological fractionation between perceptual and higher cognitive networks. Our approach may be useful for clinical research, especially for diseases that show selective abnormal connectivity in specific brain networks.


Assuntos
Encéfalo/citologia , Encéfalo/fisiologia , Rede Nervosa/citologia , Rede Nervosa/fisiologia , Adulto , Análise por Conglomerados , Cognição/fisiologia , Feminino , Humanos , Imageamento por Ressonância Magnética , Masculino , Percepção/fisiologia , Descanso/fisiologia , Fatores de Tempo , Adulto Jovem
11.
Brain ; 134(Pt 10): 2912-28, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21975588

RESUMO

The human brain is a large-scale integrated network in the functional and structural domain. Graph theoretical analysis provides a novel framework for analysing such complex networks. While previous neuroimaging studies have uncovered abnormalities in several specific brain networks in patients with idiopathic generalized epilepsy characterized by tonic-clonic seizures, little is known about changes in whole-brain functional and structural connectivity networks. Regarding functional and structural connectivity, networks are intimately related and share common small-world topological features. We predict that patients with idiopathic generalized epilepsy would exhibit a decoupling between functional and structural networks. In this study, 26 patients with idiopathic generalized epilepsy characterized by tonic-clonic seizures and 26 age- and sex-matched healthy controls were recruited. Resting-state functional magnetic resonance imaging signal correlations and diffusion tensor image tractography were used to generate functional and structural connectivity networks. Graph theoretical analysis revealed that the patients lost optimal topological organization in both functional and structural connectivity networks. Moreover, the patients showed significant increases in nodal topological characteristics in several cortical and subcortical regions, including mesial frontal cortex, putamen, thalamus and amygdala relative to controls, supporting the hypothesis that regions playing important roles in the pathogenesis of epilepsy may display abnormal hub properties in network analysis. Relative to controls, patients showed further decreases in nodal topological characteristics in areas of the default mode network, such as the posterior cingulate gyrus and inferior temporal gyrus. Most importantly, the degree of coupling between functional and structural connectivity networks was decreased, and exhibited a negative correlation with epilepsy duration in patients. Our findings suggest that the decoupling of functional and structural connectivity may reflect the progress of long-term impairment in idiopathic generalized epilepsy, and may be used as a potential biomarker to detect subtle brain abnormalities in epilepsy. Overall, our results demonstrate for the first time that idiopathic generalized epilepsy is reflected in a disrupted topological organization in large-scale brain functional and structural networks, thus providing valuable information for better understanding the pathophysiological mechanisms of generalized tonic-clonic seizures.


Assuntos
Encéfalo/fisiopatologia , Epilepsia Generalizada/fisiopatologia , Rede Nervosa/fisiopatologia , Vias Neurais/fisiopatologia , Convulsões/fisiopatologia , Adolescente , Adulto , Mapeamento Encefálico , Imagem de Tensor de Difusão , Feminino , Humanos , Interpretação de Imagem Assistida por Computador , Imageamento por Ressonância Magnética , Masculino , Neurônios/fisiologia , Reprodutibilidade dos Testes
12.
Brain Res ; 1419: 68-75, 2011 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-21937025

RESUMO

There is an increasing body of evidence pointing to a relationship between personality and brain markers. The purpose of this study was to identify the associations between personality dimensions of extraversion and neuroticism and the local synchronization of spontaneous blood oxygen level-dependent (BOLD) activity assessed by regional homogeneity (ReHo) approach. Our results revealed the significant negative correlation between neuroticism and ReHo in the left middle frontal gyrus, providing evidence for the left frontal activation involved in pleasant emotion. ReHo was correlated negatively with extraversion in the medial prefrontal cortex (MPFC), an important portion of the default mode network (DMN), thus further indicating the relationship between DMN and personality. In addition, ReHo in the insula, cerebellum and cingulate gyrus was correlated positively with extraversion, suggesting the associations between individual difference in extraversion and specific brain regions involved in affective processing. These findings shed light on the important relationship between the synchronization of spontaneous fluctuations and personality dimensions of extraversion and neuroticism, which provide further evidence for the neural underpinning of individual difference in personality traits.


Assuntos
Encéfalo/fisiologia , Extroversão Psicológica , Imageamento por Ressonância Magnética/métodos , Transtornos Neuróticos/fisiopatologia , Oxigênio/sangue , Personalidade/fisiologia , Adolescente , Adulto , Mapeamento Encefálico/métodos , Feminino , Humanos , Masculino , Transtornos Neuróticos/diagnóstico , Valor Preditivo dos Testes , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA