Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Front Cardiovasc Med ; 9: 945451, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36267636

RESUMO

Background: Coronary artery disease (CAD) is a progressive disease of the blood vessels supplying the heart, which leads to coronary artery stenosis or obstruction and is life-threatening. Early diagnosis of CAD is essential for timely intervention. Imaging tests are widely used in diagnosing CAD, and artificial intelligence (AI) technology is used to shed light on the development of new imaging diagnostic markers. Objective: We aim to investigate and summarize how AI algorithms are used in the development of diagnostic models of CAD with imaging markers. Methods: This scoping review followed the Preferred Reporting Items for Systematic Reviews and Meta-Analyses extension for Scoping Reviews (PRISMA-ScR) guideline. Eligible articles were searched in PubMed and Embase. Based on the predefined included criteria, articles on coronary heart disease were selected for this scoping review. Data extraction was independently conducted by two reviewers, and a narrative synthesis approach was used in the analysis. Results: A total of 46 articles were included in the scoping review. The most common types of imaging methods complemented by AI included single-photon emission computed tomography (15/46, 32.6%) and coronary computed tomography angiography (15/46, 32.6%). Deep learning (DL) (41/46, 89.2%) algorithms were used more often than machine learning algorithms (5/46, 10.8%). The models yielded good model performance in terms of accuracy, sensitivity, specificity, and AUC. However, most of the primary studies used a relatively small sample (n < 500) in model development, and only few studies (4/46, 8.7%) carried out external validation of the AI model. Conclusion: As non-invasive diagnostic methods, imaging markers integrated with AI have exhibited considerable potential in the diagnosis of CAD. External validation of model performance and evaluation of clinical use aid in the confirmation of the added value of markers in practice. Systematic review registration: [https://www.crd.york.ac.uk/prospero/display_record.php?ID=CRD42022306638], identifier [CRD42022306638].

2.
Front Cardiovasc Med ; 9: 895836, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35935639

RESUMO

Background: Heart failure is currently divided into three main forms, HFrEF, HFpEF, and HFmrEF, but its etiology is diverse and highly heterogeneous. Many studies reported a variety of novel subgroups in heart failure patients, with unsupervised machine learning methods. The aim of this scoping review is to provide insights into how these techniques can diagnose and manage HF faster and better, thus providing direction for future research and facilitating its routine use in clinical practice. Methods: The review was performed following PRISMA-SCR guideline. We searched the PubMed database for eligible publications. Studies were included if they defined new subgroups in HF patients using clustering analysis methods, and excluded if they are (1) Reviews, commentary, or editorials, (2) Studies not about defining new sub-types, or (3) Studies not using unsupervised algorithms. All study screening and data extraction were conducted independently by two investigators and narrative integration of data extracted from included studies was performed. Results: Of the 498 studies identified, 47 were included in the analysis. Most studies (61.7%) were published in 2020 and later. The largest number of studies (46.8%) coming from the United States, and most of the studies were authored and included in the same country. The most commonly used machine learning method was hierarchical cluster analysis (46.8%), the most commonly used cluster variable type was comorbidity (61.7%), and the least used cluster variable type was genomics (12.8%). Most of the studies used data sets of less than 500 patients (48.9%), and the sample size had negative correlation with the number of clustering variables. The majority of studies (85.1%) assessed the association between cluster grouping and at least one outcomes, with death and hospitalization being the most commonly used outcome measures. Conclusion: This scoping review provides an overview of recent studies proposing novel HF subgroups based on clustering analysis. Differences were found in study design, study population, clustering methods and variables, and outcomes of interests, and we provided insights into how these studies were conducted and identify the knowledge gaps to guide future research.

3.
Pathogens ; 11(8)2022 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-36015023

RESUMO

Aims: We investigate how fasting blood glucose (FBG) levels affect the clinical severity in coronavirus disease 2019 (COVID-19) patients, pneumonia patients with sole bacterial infection, and pneumonia patients with concurrent bacterial and fungal infections. Methods: We enrolled 2761 COVID-19 patients, 1686 pneumonia patients with bacterial infections, and 2035 pneumonia patients with concurrent infections. We used multivariate logistic regression analysis to assess the associations between FBG levels and clinical severity. Results: FBG levels in COVID-19 patients were significantly higher than in other pneumonia patients during hospitalisation and at discharge (all p < 0.05). Among COVID-19 patients, the odds ratios of acute respiratory distress syndrome (ARDS), respiratory failure (RF), acute hepatitis/liver failure (AH/LF), length of stay, and intensive care unit (ICU) admission were 12.80 (95% CI, 4.80−37.96), 5.72 (2.95−11.06), 2.60 (1.20−5.32), 1.42 (1.26−1.59), and 5.16 (3.26−8.17) times higher in the FBG ≥7.0 mmol/L group than in FBG < 6.1 mmol/L group, respectively. The odds ratios of RF, AH/LF, length of stay, and ICU admission were increased to a lesser extent in pneumonia patients with sole bacterial infection (3.70 [2.21−6.29]; 1.56 [1.17−2.07]; 0.98 [0.88−1.11]; 2.06 [1.26−3.36], respectively). The odds ratios of ARDS, RF, AH/LF, length of stay, and ICU admission were increased to a lesser extent in pneumonia patients with concurrent infections (3.04 [0.36−6.41]; 2.31 [1.76−3.05]; 1.21 [0.97−1.52]; 1.02 [0.93−1.13]; 1.72 [1.19−2.50], respectively). Among COVID-19 patients, the incidence rate of ICU admission on day 21 in the FBG ≥ 7.0 mmol/L group was six times higher than in the FBG < 6.1 mmol/L group (12.30% vs. 2.21%, p < 0.001). Among other pneumonia patients, the incidence rate of ICU admission on day 21 was only two times higher. Conclusions: Elevated FBG levels at admission predict subsequent clinical severity in all pneumonia patients regardless of the underlying pathogens, but COVID-19 patients are more sensitive to FBG levels, and suffer more severe clinical complications than other pneumonia patients.

4.
Front Med (Lausanne) ; 9: 813820, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35795627

RESUMO

Background: Coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has been spreading globally. Information regarding the characteristics and prognosis of antibody non-responders to COVID-19 is limited. Methods: In this retrospective, single-center study, we included all patients with confirmed COVID-19 using real-time reverse transcriptase-polymerase chain reaction (RT-PCR) admitted to the Fire God Mountain hospital from February 3, 2020, to April 14, 2020. A total of 1,921 patients were divided into the antibody-negative (n = 94) and antibody-positive (n = 1,827) groups, and 1:1 propensity score matching was used to match the two groups. Results: In the antibody-negative group, 40 patients (42.6%) were men, and 49 (52.1%) were older than 65 years. Cough was the most common symptom in the antibody negative group. White blood cell counts, neutrophils, C-reactive protein, procalcitonin, interleukin-6, lactate dehydrogenase, creatine kinase, creatine kinase isoenzyme, urea nitrogen, and creatinine were significantly higher in the antibody-negative patients than in the antibody-positive group (P < 0.005). The number of days of nucleic acid-negative conversion in the antibody-negative group was shorter than that in the antibody-positive group (P < 0.001). The hospitalization time of the antibody-negative patients was shorter than that of the antibody-positive patients (P < 0.001). Conclusion: Some COVID-19 patients without specific antibodies had mild symptoms; however, the inflammatory reaction caused by innate clinical immunity was more intense than those associated with antibodies. Non-specific immune responses played an essential role in virus clearance. There was no direct correlation between excessive inflammatory response and adverse outcomes in patients. The risk of reinfection and vaccination strategies for antibody-negative patients need to be further explored.

5.
Front Endocrinol (Lausanne) ; 12: 791476, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34956098

RESUMO

Background: We aimed to understand how glycaemic levels among COVID-19 patients impact their disease progression and clinical complications. Methods: We enrolled 2,366 COVID-19 patients from Huoshenshan hospital in Wuhan. We stratified the COVID-19 patients into four subgroups by current fasting blood glucose (FBG) levels and their awareness of prior diabetic status, including patients with FBG<6.1mmol/L with no history of diabetes (group 1), patients with FBG<6.1mmol/L with a history of diabetes diagnosed (group 2), patients with FBG≥6.1mmol/L with no history of diabetes (group 3) and patients with FBG≥6.1mmol/L with a history of diabetes diagnosed (group 4). A multivariate cause-specific Cox proportional hazard model was used to assess the associations between FBG levels or prior diabetic status and clinical adversities in COVID-19 patients. Results: COVID-19 patients with higher FBG and unknown diabetes in the past (group 3) are more likely to progress to the severe or critical stage than patients in other groups (severe: 38.46% vs 23.46%-30.70%; critical 7.69% vs 0.61%-3.96%). These patients also have the highest abnormal level of inflammatory parameters, complications, and clinical adversities among all four groups (all p<0.05). On day 21 of hospitalisation, group 3 had a significantly higher risk of ICU admission [14.1% (9.6%-18.6%)] than group 4 [7.0% (3.7%-10.3%)], group 2 [4.0% (0.2%-7.8%)] and group 1 [2.1% (1.4%-2.8%)], (P<0.001). Compared with group 1 who had low FBG, group 3 demonstrated 5 times higher risk of ICU admission events during hospitalisation (HR=5.38, 3.46-8.35, P<0.001), while group 4, where the patients had high FBG and prior diabetes diagnosed, also showed a significantly higher risk (HR=1.99, 1.12-3.52, P=0.019), but to a much lesser extent than in group 3. Conclusion: Our study shows that COVID-19 patients with current high FBG levels but unaware of pre-existing diabetes, or possibly new onset diabetes as a result of COVID-19 infection, have a higher risk of more severe adverse outcomes than those aware of prior diagnosis of diabetes and those with low current FBG levels.


Assuntos
Glicemia/metabolismo , COVID-19/sangue , Adulto , Idoso , Idoso de 80 Anos ou mais , Jejum/sangue , Feminino , Hospitalização , Humanos , Masculino , Pessoa de Meia-Idade , Prognóstico , Estudos Retrospectivos , Fatores de Risco
6.
Stat Med ; 40(3): 668-689, 2021 02 10.
Artigo em Inglês | MEDLINE | ID: mdl-33210329

RESUMO

In this article, we introduce the recently developed intrinsic estimator method in the age-period-cohort (APC) models in examining disease incidence and mortality data, further develop a likelihood ratio (L-R) test for testing differences in temporal trends across populations, and apply the methods to examining temporal trends in the age, period or calendar time, and birth cohort of the US heart disease mortality across racial and sex groups. The temporal trends are estimated with the intrinsic estimator method to address the model identification problem, in which multiple sets of parameter estimates yield the same fitted values for a given dataset, making it difficult to conduct comparison of and hypothesis testing on the temporal trends in the age, period, and cohort across populations. We employ a penalized profile log-likelihood approach in developing the L-R test to deal with the issues of multiple estimators and the diverging number of model parameters. The identification problem also induces overparametrization of the APC model, which requires a correction of the degree of freedom of the L-R test. Monte Carlo simulation studies demonstrate that the L-R test performs well in the Type I error calculation and is powerful to detect differences in the age or period trends. The L-R test further reveals disparities of heart disease mortality among the US populations and between the US and Japanese populations.


Assuntos
Cardiopatias , Estudos de Coortes , Humanos , Japão/epidemiologia , Funções Verossimilhança , Grupos Raciais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA