Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 72
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Fungi (Basel) ; 10(4)2024 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-38667969

RESUMO

Fusarium crown rot (FCR) in wheat is a prevalent soil-borne disease worldwide and poses a significant threat to the production of wheat (Triticum aestivum) in China, with F. pseudograminearum being the dominant pathogen. Currently, there is a shortage of biocontrol resources to control FCR induced by F. pseudograminearum, along with biocontrol mechanisms. In this study, we have identified 37 strains of biocontrol bacteria displaying antagonistic effects against F. pseudograminearum from over 8000 single colonies isolated from soil samples with a high incidence of FCR. Among them, QY43 exhibited remarkable efficacy in controlling FCR. Further analysis identified the isolate QY43 as Pseudomonas aeruginosa, based on its colony morphology and molecular biology. In vitro, QY43 significantly inhibited the growth, conidial germination, and the pathogenicity of F. pseudograminearum. In addition, QY43 exhibited a broad spectrum of antagonistic activities against several plant pathogens. The genomics analysis revealed that there are genes encoding potential biocontrol factors in the genome of QY43. The experimental results confirmed that QY43 secretes biocontrol factor siderophores and pyocyanin. In summary, QY43 exhibits a broad spectrum of antagonistic activities and the capacity to produce diverse biocontrol factors, thereby showing substantial potential for biocontrol applications to plant disease.

2.
Microbiol Res ; 282: 127657, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38422862

RESUMO

Halophytes inhabit saline soils, wherein most plants cannot grow, therefore, their ecological value is outstanding. Arbuscular mycorrhizal (AM) fungi can reconstruct microbial communities to assist plants with stress tolerance. However, little information is available on the microbial community assembly of AM fungi in halophytes. A pot experiment was conducted to investigate the effects of AM fungi on rhizosphere bacterial community structure and soil physiochemical characteristics in the halophyte Suaeda salsa at 0, 100, and 400 mM NaCl. The results demonstrated that AM fungi increased soil alkaline phosphatase (ALP) activity at the three NaCl concentrations, and decreased available P, available K, and the activity of soil catalase (CAT) at 100 mM NaCl. AM fungi decreased the Shannon index of the community at 0 and 100 mM NaCl and increased Sobs index at 400 mM NaCl. Regarding the bacterial community structure, AM fungi substantially decreased the abundance of Acidobacteria phylum at 0 and 100 mM NaCl. AM fungi significantly increased the abundance of genus Ramlibacter, an oxyanion-reducing bacteria that can clean out reactive oxygen species (ROS). AM fungi recruited the genera Massilia and Arthrobacter at 0 and 100 mM NaCl, respectively. Some strains in the two genera have been ascribed to plant growth promoting bacteria (PGPB). AM fungi increased the dry weight and promoted halophyte growth at all three NaCl levels. This study supplements the understanding that AM fungi assemble rhizosphere bacterial communities in halophytes.


Assuntos
Chenopodiaceae , Micorrizas , Plantas Tolerantes a Sal , Cloreto de Sódio , Fungos , Bactérias/genética , Solo/química , Microbiologia do Solo
3.
Adv Sci (Weinh) ; 11(16): e2303379, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38380561

RESUMO

Patient-Derived Organoids (PDO) and Xenografts (PDX) are the current gold standards for patient-derived models of cancer (PDMC). Nevertheless, how patient tumor cells evolve in these models and the impact on drug response remains unclear. Herein, the transcriptomic and chromatin accessibility landscapes of matched colorectal cancer (CRC) PDO, PDX, PDO-derived PDX (PDOX), and original patient tumors (PT) are compared. Two major remodeling axes are discovered. The first axis delineates PDMC from PT, and the second axis distinguishes PDX and PDO. PDOX are more similar to PDX than PDO, indicating the growth environment is a driving force for chromatin adaptation. Transcription factors (TF) that differentially bind to open chromatins between matched PDO and PDOX are identified. Among them, KLF14 and EGR2 footprints are enriched in PDOX relative to matched PDO, and silencing of KLF14 or EGR2 promoted tumor growth. Furthermore, EPHA4, a shared downstream target gene of KLF14 and EGR2, altered tumor sensitivity to MEK inhibitor treatment. Altogether, patient-derived CRC cells undergo both common and distinct chromatin remodeling in PDO and PDX/PDOX, driven largely by their respective microenvironments, which results in differences in growth and drug sensitivity and needs to be taken into consideration when interpreting their ability to predict clinical outcome.


Assuntos
Montagem e Desmontagem da Cromatina , Neoplasias Colorretais , Organoides , Neoplasias Colorretais/genética , Neoplasias Colorretais/patologia , Neoplasias Colorretais/metabolismo , Humanos , Montagem e Desmontagem da Cromatina/genética , Camundongos , Animais , Organoides/metabolismo , Modelos Animais de Doenças
4.
iScience ; 27(1): 108288, 2024 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-38179063

RESUMO

To elucidate host response elements that define impending decompensation during SARS-CoV-2 infection, we enrolled subjects hospitalized with COVID-19 who were matched for disease severity and comorbidities at the time of admission. We performed combined single-cell RNA sequencing (scRNA-seq) and single-cell assay for transposase-accessible chromatin using sequencing (scATAC-seq) on peripheral blood mononuclear cells (PBMCs) at admission and compared subjects who improved from their moderate disease with those who later clinically decompensated and required invasive mechanical ventilation or died. Chromatin accessibility and transcriptomic immune profiles were markedly altered between the two groups, with strong signals in CD4+ T cells, inflammatory T cells, dendritic cells, and NK cells. Multiomic signature scores at admission were tightly associated with future clinical deterioration (auROC 1.0). Epigenetic and transcriptional changes in PBMCs reveal early, broad immune dysregulation before typical clinical signs of decompensation are apparent and thus may act as biomarkers to predict future severity in COVID-19.

5.
Cancer Immunol Immunother ; 73(2): 34, 2024 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-38280067

RESUMO

Immune checkpoint inhibitors (ICIs) have demonstrated efficacy and improved survival in a growing number of cancers. Despite their success, ICIs are associated with immune-related adverse events that can interfere with their use. Therefore, safer approaches are needed. CD6, expressed by T-lymphocytes and human NK cells, engages in cell-cell interactions by binding to its ligands CD166 (ALCAM) and CD318 (CDCP1). CD6 is a target protein for regulating immune responses and is required for the development of several mouse models of autoimmunity. Interestingly, CD6 is exclusively expressed on immune cells while CD318 is strongly expressed on most cancers. Here we demonstrate that disrupting the CD6-CD318 axis with UMCD6, an anti-CD6 monoclonal antibody, prolongs survival of mice in xenograft mouse models of human breast and prostate cancer, treated with infusions of human lymphocytes. Analysis of tumor-infiltrating immune cells showed that augmentation of lymphocyte cytotoxicity by UMCD6 is due to effects of this antibody on NK, NKT and CD8 + T cells. In particular, tumor-infiltrating cytotoxic lymphocytes from UMCD6-treated mice expressed higher levels of perforin and were found in higher proportions than those from IgG-treated mice. Moreover, RNA-seq analysis of human NK-92 cells treated with UMCD6 revealed that UMCD6 up-regulates the NKG2D-DAP10 receptor complex, important in NK cell activation, as well as its downstream target PI3K. Our results now describe the phenotypic changes that occur on immune cells upon treatment with UMCD6 and further confirm that the CD6-CD318 axis can regulate the activation state of cytotoxic lymphocytes and their positioning within the tumor microenvironment.


Assuntos
Antineoplásicos , Neoplasias , Animais , Humanos , Camundongos , Anticorpos Monoclonais/farmacologia , Antígenos CD , Antígenos de Diferenciação de Linfócitos T/metabolismo , Antígenos de Neoplasias , Moléculas de Adesão Celular , Linfócitos/metabolismo , Microambiente Tumoral
6.
Res Sq ; 2023 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-37886483

RESUMO

Immune checkpoint inhibitors (ICIs) have demonstrated efficacy and improved survival in a growing number of cancers. Despite their success, ICIs are associated with immune-related adverse events that can interfere with their use. Therefore, safer approaches are needed. CD6, expressed by T-lymphocytes and human NK cells, engages in cell-cell interactions by binding to its ligands CD166 (ALCAM) and CD318 (CDCP1). CD6 is a target protein for regulating immune responses and is required for the development of several mouse models of autoimmunity. Interestingly, CD6 is exclusively expressed on immune cells while CD318 is strongly expressed on most cancers. Here we demonstrate that disrupting the CD6-CD318 axis with UMCD6, an anti-CD6 monoclonal antibody, prolongs survival of mice in xenograft models of human breast and prostate cancer, treated with infusions of human lymphocytes. Analysis of tumor-infiltrating immune cells showed that augmentation of lymphocyte cytotoxicity by UMCD6 is due to effects of this antibody on NK, NKT and CD8+ T cells. Tumor-infiltrating cytotoxic lymphocytes were found in higher proportions and were activated in UMCD6-treated mice compared to controls. Similar changes in gene expression were observed by RNA-seq analysis of NK cells treated with UMCD6. Particularly, UMCD6 up-regulated the NKG2D-DAP10 complex and activated PI3K. Thus, the CD6-CD318 axis can regulate the activation state of cytotoxic lymphocytes and their positioning within the tumor microenvironment.

7.
Int J Mol Sci ; 24(13)2023 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-37446163

RESUMO

Fusarium pseudograminearum is one of the major fungal pathogens that cause Fusarium crown rot (FCR) worldwide and can lead to a substantially reduced grain yield and quality. Transcription factors play an important role in regulating growth and pathogenicity in plant pathogens. In this study, we identified a putative Zn(II)2Cys6 fungal-type domain-containing transcription factor and named it FpUme18. The expression of FpUME18 was induced during the infection of wheat by F. pseudograminearum. The ΔFpume18 deletion mutant showed defects in growth, conidial production, and conidial germination. In the responses to the cell wall, salt and oxidative stresses, the ΔFpume18 mutant inhibited the rate of mycelial growth at a higher rate compared with the wild type. The staining of conidia and mycelia with lipophilic dye FM4-64 revealed a delay in endocytosis when FpUME18 was deleted. FpUME18 also positively regulated the expression of phospholipid-related synthesis genes. The deletion of FpUME18 attenuated the pathogenicity of wheat coleoptiles. FpUME18 also participated in the production of the DON toxin by regulating the expression of TRI genes. Collectively, FpUme18 is required for vegetative growth, conidiation, stress response, endocytosis, and full virulence in F. pseudograminearum.


Assuntos
Fusarium , Parede Celular/genética , Endocitose/genética , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Fusarium/genética , Fusarium/patogenicidade , Regulação Fúngica da Expressão Gênica/genética , Doenças das Plantas/microbiologia , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Virulência/genética , Esporos Fúngicos/genética , Deleção de Sequência/genética
8.
J Agric Food Chem ; 71(25): 9753-9761, 2023 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-37261403

RESUMO

Falcarindiol is active against phytopathogenic fungi. In the present study, racemic falcarindiol analogs (8a-8q) were designed, synthesized, and tested for their activities against eight economically significant phytopathogenic fungal species. The compound 8o displayed the best antifungal activities and up to 54.6-fold in vitro potency improvement against Phytophthora capsici than the natural product stipudiol. Its half-maximum effective concentrations ranged from 4 to 23 µg/mL against all tested fungal species. Racemic 8o was 195-fold more potent than the fungicide carbendazim against P. capsici in vitro. The isomer (1S, 6S)-8o exhibited an EC50 of 1.10 and 2.70 µg/mL against Monilia fructigena and P. capsici, respectively, which was 47 and 11 times lower than (1R, 6S)-8o and (1S, 6R)-8o. In addition, in vivo bioassay results showed that (1S, 6S)-8o had high antifungal activity against infection of M. fructigena and P. capsici to apricot and pepper fruits and pepper plants, which the efficacy was similar or better than carbendazim. The high potency and selectivity of 8o stereoisomers against the phytopathogens warrant an interest in elucidating the molecular target for fungicide development.


Assuntos
Antifúngicos , Fungicidas Industriais , Antifúngicos/farmacologia , Fungicidas Industriais/farmacologia , Polímero Poliacetilênico , Estereoisomerismo , Poli-Inos , Fungos , Relação Estrutura-Atividade
9.
Ecotoxicol Environ Saf ; 262: 115128, 2023 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-37315361

RESUMO

Rare earth elements (REEs) have been widely used in traditional and high-tech fields, and high doses of REEs are considered a risk to the ecosystem. Although the influence of arbuscular mycorrhizal fungi (AMF) in promoting host resistance to heavy metal (HM) stress has been well documented, the molecular mechanism by which AMF symbiosis enhances plant tolerance to REEs is still unclear. A pot experiment was conducted to investigate the molecular mechanism by which the AMF Claroideoglomus etunicatum promotes maize (Zea mays) seedling tolerance to lanthanum (La) stress (100 mg·kg-1 La). C. etunicatum symbiosis significantly improved maize seedling growth, P and La uptake and photosynthesis. Transcriptome, proteome, and metabolome analyses performed alone and together revealed that differentially expressed genes (DEGs) related to auxin /indole-3-acetic acid (AUX/IAA) and the DEGs and differentially expressed proteins (DEPs) related to ATP-binding cassette (ABC) transporters, natural resistance-associated macrophage proteins (Nramp6), vacuoles and vesicles were upregulated. In contrast, photosynthesis-related DEGs and DEPs were downregulated, and 1-phosphatidyl-1D-myo-inositol 3-phosphate (PI(3)P) was more abundant under C. etunicatum symbiosis. C. etunicatum symbiosis can promote plant growth by increasing P uptake, regulating plant hormone signal transduction, photosynthesis and glycerophospholipid metabolism pathways and enhancing La transport and compartmentalization in vacuoles and vesicles. The results provide new insights into the promotion of plant REE tolerance by AMF symbiosis and the possibility of utilizing AMF-maize interactions in REE phytoremediation and recycling.

11.
Int J Biol Macromol ; 238: 124049, 2023 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-36931485

RESUMO

Nanoplastics are an emerging environmental contaminant that can penetrate biological barriers to enter the bloodstream and risk human health. In this context, nanoplastics are likely to interact with proteins in the blood to possibly affect protein structure and function and consequently induce biological effects. Here we report that polystyrene (PS), PS-NH2, and PS-COOH nanoplastics disrupt the structure of human fibrinogen (HF) in a dose-dependent manner, as revealed by UV-vis and fluorescence spectroscopy. All three nanoplastics interacted with HF in a similar way, with PS-NH2 having the greatest effect on HF structure. Furthermore, fibrinogen polymerization experiments demonstrated that nanoplastics have the potential to promote blood coagulation, with PS-NH2 again having a stronger effect. Collectively, these results provide insights into the interactions occurring between nanoplastics and HF, the likely transport and fate of nanoplastics in organisms, and their potential pathophysiological consequences.


Assuntos
Nanopartículas , Poluentes Químicos da Água , Humanos , Poliestirenos/química , Microplásticos , Fibrinogênio , Nanopartículas/química , Poluentes Químicos da Água/química
12.
Mol Plant Microbe Interact ; 36(7): 452-456, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-36802869

RESUMO

Bipolaris sorokiniana, one of the most devastating hemibiotrophic fungal pathogens, causes root rot, crown rot, leaf blotching, and black embryos of gramineous crops worldwide, posing a serious threat to global food security. However, the host-pathogen interaction mechanism between B. sorokiniana and wheat remains poorly understood. To facilitate related studies, we sequenced and assembled the genome of B. sorokiniana LK93. Nanopore long reads and next generation sequencing short reads were applied in the genome assembly, and the final 36.4-Mb genome assembly contains 16 contigs with the contig N50 of 2.3 Mb. Subsequently, we annotated 11,811 protein-coding genes. Of these, 10,620 were functional genes, 258 of which were identified as secretory proteins, including 211 predicted effectors. Additionally, the 111,581-bp mitogenome of LK93 was assembled and annotated. The LK93 genomes presented in this study will facilitate research in the B. sorokiniana-wheat pathosystem for better control of crop diseases. [Formula: see text] Copyright © 2023 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.


Assuntos
Ascomicetos , Genoma Mitocondrial , Ascomicetos/genética , Triticum/microbiologia , Genoma Mitocondrial/genética , Bipolaris/genética , Doenças das Plantas/microbiologia
13.
Exp Hematol Oncol ; 11(1): 83, 2022 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-36316713

RESUMO

BACKGROUND: Thioredoxin-1 (TXN1) is one of the major cellular antioxidants in mammals and is involved in a wide range of physiological cellular responses. However, little is known about the roles and the underlying molecular mechanisms of TXN1 in the regulation of hematopoietic stem/progenitor cells (HSPCs). METHODS: TXN1 conditional knockout mice (ROSA-CreER-TXN1fl/fl) and TXN1fl/fl control mice were used. The mice were treated with tamoxifen and the number and biological functions of HSPCs were measured by flow cytometry, PCR and western blot. Limiting dilution competitive transplantation with sorted HSCs and serial transplantations were performed to assess the effects of TXN1 knockout on HSC self-renewal and long-term reconstitutional capacity. RNA sequencing (RNA-seq) was performed to investigate the downstream molecular pathways of TXN1 deletion in murine HSPCs. CRISPR/Cas9 knockout experiments were performed in vitro in EML murine hematopoietic stem/progenitor cell line to investigate the effects of TXN1 and/or TP53 deletion on cell survival, senescence and colony forming units. TP53 protein degradation assay, CHiP PCR and PGL3 firefly/renilla reporter assay were performed. The effects of TXN1 on various molecular pathways relevant to HSC radiation protection were examined in vitro and in vivo. RESULTS: TXN1-TP53 tumor suppressor axis regulates HSPC biological fitness. Deletion of TXN1 in HSPCs using in vivo and in vitro models activates TP53 signaling pathway, and attenuates HSPC capacity to reconstitute hematopoiesis. Furthermore, we found that knocking out of TXN1 renders HSPCs more sensitive to radiation and treatment with recombinant TXN1 promotes the proliferation and expansion of HSPCs. CONCLUSIONS: Our findings suggest that TXN1-TP53 axis acts as a regulatory mechanism in HSPC biological functions. Additionally, our study demonstrates the clinical potential of TXN1 for enhancing hematopoietic recovery in hematopoietic stem cell transplant and protecting HSPCs from radiation injury.

14.
Int J Biol Macromol ; 220: 721-732, 2022 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-35981683

RESUMO

Tup1, a conserved transcriptional repressor, plays a critical role in the growth and development of fungi. Here, we identified a BsTup1 gene from the plant pathogenic fungus Bipolaris sorokiniana. The expression of BsTup1 showed a more than three-fold increase during the conidial stage compared with mycelium stage. Deletion of BsTup1 led to decrease hyphal growth and defect in conidia formation. A significant difference was detected in osmotic, oxidative, or cell wall stress responses between the WT and ΔBsTup1 strains. Pathogenicity assays showed that virulence of the ΔBsTup1 mutant was dramatically decreased on wheat and barely leaves. Moreover, it was observed that hyphal tips of the mutants could not form appressorium-like structures on the inner epidermis of onion and barley coleoptile. Yeast two-hybrid assays indicated that BsTup1 could interact with the BsSsn6. RNAseq revealed significant transcriptional changes in the ΔBsTup1 mutant with 2369 genes down-regulated and 2962 genes up-regulated. In these genes, we found that a subset of genes involved in fungal growth, sporulation, cell wall integrity, osmotic stress, oxidation stress, and pathogenicity, which were misregulated in the ΔBsTup1 mutant. These data revealed that BsTup1 has multiple functions in fungal growth, development, stress response and pathogenesis in B. sorokiniana.


Assuntos
Bipolaris , Hordeum , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Hordeum/genética , Hordeum/metabolismo , Doenças das Plantas/microbiologia , Esporos Fúngicos/genética , Virulência/genética
15.
Stem Cell Reports ; 17(9): 1959-1975, 2022 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-35985334

RESUMO

In vitro tissue models hold great promise for modeling diseases and drug responses. Here, we used emulsion microfluidics to form micro-organospheres (MOSs), which are droplet-encapsulated miniature three-dimensional (3D) tissue models that can be established rapidly from patient tissues or cells. MOSs retain key biological features and responses to chemo-, targeted, and radiation therapies compared with organoids. The small size and large surface-to-volume ratio of MOSs enable various applications including quantitative assessment of nutrient dependence, pathogen-host interaction for anti-viral drug screening, and a rapid potency assay for chimeric antigen receptor (CAR)-T therapy. An automated MOS imaging pipeline combined with machine learning overcomes plating variation, distinguishes tumorspheres from stroma, differentiates cytostatic versus cytotoxic drug effects, and captures resistant clones and heterogeneity in drug response. This pipeline is capable of robust assessments of drug response at individual-tumorsphere resolution and provides a rapid and high-throughput therapeutic profiling platform for precision medicine.


Assuntos
Antineoplásicos , Organoides , Antineoplásicos/farmacologia , Avaliação Pré-Clínica de Medicamentos/métodos , Humanos , Microfluídica , Medicina de Precisão
16.
Sci Rep ; 12(1): 11714, 2022 07 09.
Artigo em Inglês | MEDLINE | ID: mdl-35810186

RESUMO

SARS-CoV-2 infection triggers profound and variable immune responses in human hosts. Chromatin remodeling has been observed in individuals severely ill or convalescing with COVID-19, but chromatin remodeling early in disease prior to anti-spike protein IgG seroconversion has not been defined. We performed the Assay for Transposase-Accessible Chromatin using sequencing (ATAC-seq) and RNA-seq on peripheral blood mononuclear cells (PBMCs) from outpatients with mild or moderate symptom severity at different stages of clinical illness. Early in the disease course prior to IgG seroconversion, modifications in chromatin accessibility associated with mild or moderate symptoms were already robust and included severity-associated changes in accessibility of genes in interleukin signaling, regulation of cell differentiation and cell morphology. Furthermore, single-cell analyses revealed evolution of the chromatin accessibility landscape and transcription factor motif accessibility for individual PBMC cell types over time. The most extensive remodeling occurred in CD14+ monocytes, where sub-populations with distinct chromatin accessibility profiles were observed prior to seroconversion. Mild symptom severity was marked by upregulation of classical antiviral pathways, including those regulating IRF1 and IRF7, whereas in moderate disease, these classical antiviral signals diminished, suggesting dysregulated and less effective responses. Together, these observations offer novel insight into the epigenome of early mild SARS-CoV-2 infection and suggest that detection of chromatin remodeling in early disease may offer promise for a new class of diagnostic tools for COVID-19.


Assuntos
COVID-19 , Cromatina , Antivirais , COVID-19/genética , Cromatina/genética , Humanos , Imunoglobulina G/genética , Leucócitos Mononucleares , SARS-CoV-2 , Soroconversão , Índice de Gravidade de Doença
17.
Cell Stem Cell ; 29(6): 905-917.e6, 2022 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-35508177

RESUMO

Patient-derived xenografts (PDXs) and patient-derived organoids (PDOs) have been shown to model clinical response to cancer therapy. However, it remains challenging to use these models to guide timely clinical decisions for cancer patients. Here, we used droplet emulsion microfluidics with temperature control and dead-volume minimization to rapidly generate thousands of micro-organospheres (MOSs) from low-volume patient tissues, which serve as an ideal patient-derived model for clinical precision oncology. A clinical study of recently diagnosed metastatic colorectal cancer (CRC) patients using an MOS-based precision oncology pipeline reliably assessed tumor drug response within 14 days, a timeline suitable for guiding treatment decisions in the clinic. Furthermore, MOSs capture original stromal cells and allow T cell penetration, providing a clinical assay for testing immuno-oncology (IO) therapies such as PD-1 blockade, bispecific antibodies, and T cell therapies on patient tumors.


Assuntos
Neoplasias do Colo , Medicina de Precisão , Neoplasias do Colo/patologia , Humanos , Imunoterapia , Organoides/patologia
18.
Res Sq ; 2022 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-35411343

RESUMO

SARS-CoV-2 infection triggers profound and variable immune responses in human hosts. Chromatin remodeling has been observed in individuals severely ill or convalescing with COVID-19, but chromatin remodeling early in disease prior to anti-spike protein IgG seroconversion has not been defined. We performed the Assay for Transposase-Accessible Chromatin using sequencing (ATAC-seq) and RNA-seq on peripheral blood mononuclear cells (PBMCs) from outpatients with mild or moderate symptom severity at different stages of clinical illness. Early in the disease course prior to IgG seroconversion, modifications in chromatin accessibility associate with mild or moderate symptoms are already robust and include severity-associated changes in accessibility of genes in interleukin signaling, regulation of cell differentiation and cell morphology. Furthermore, single-cell analyses revealed evolution of the chromatin accessibility landscape and transcription factor motif accessibility for individual PBMC cell types over time. The most extensive remodeling occurred in CD14+ monocytes, where sub-populations with distinct chromatin accessibility profiles were observed prior to seroconversion. Mild symptom severity is marked by upregulation classical antiviral pathways including those regulating IRF1 and IRF7, whereas in moderate disease these classical antiviral signals diminish suggesting dysregulated and less effective responses. Together, these observations offer novel insight into the epigenome of early mild SARS-CoV-2 infection and suggest that detection of chromatin remodeling in early disease may offer promise for a new class of diagnostic tools for COVID-19.

19.
Dev Cell ; 57(3): 310-328.e9, 2022 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-35134344

RESUMO

Oncogenic Kras induces a hyper-proliferative state that permits cells to progress to neoplasms in diverse epithelial tissues. Depending on the cell of origin, this also involves lineage transformation. Although a multitude of downstream factors have been implicated in these processes, the precise chronology of molecular events controlling them remains elusive. Using mouse models, primary human tissues, and cell lines, we show that, in Kras-mutant alveolar type II cells (AEC2), FOSL1-based AP-1 factor guides the mSWI/SNF complex to increase chromatin accessibility at genomic loci controlling the expression of genes necessary for neoplastic transformation. We identified two orthogonal processes in Kras-mutant distal airway club cells. The first promoted their transdifferentiation into an AEC2-like state through NKX2.1, and the second controlled oncogenic transformation through the AP-1 complex. Our results suggest that neoplasms retain an epigenetic memory of their cell of origin through cell-type-specific transcription factors. Our analysis showed that a cross-tissue-conserved AP-1-dependent chromatin remodeling program regulates carcinogenesis.


Assuntos
Plasticidade Celular/genética , Epigênese Genética , Células Epiteliais/citologia , Células Epiteliais/metabolismo , Oncogenes , Proteínas Proto-Oncogênicas p21(ras)/genética , Células Epiteliais Alveolares/metabolismo , Animais , Sequência de Bases , Linhagem Celular , Proliferação de Células/genética , Epigenoma , Humanos , Camundongos Endogâmicos NOD , Camundongos SCID , Proteínas Mutantes/metabolismo , Mutação/genética , Neoplasias/patologia , Nucleossomos/metabolismo , Especificidade de Órgãos , Proteínas Proto-Oncogênicas c-fos , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Fator de Transcrição AP-1/metabolismo
20.
Biochem Genet ; 60(5): 1601-1614, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35064361

RESUMO

Homeobox transcription factors have been implicated in filamentous growth, conidia formation and virulence in fungal pathogens. However, the presence of the homeobox gene family and their potential influence on pathogenesis in Fusarium pseudograminearum have not been investigated. F. pseudograminearum is an important plant pathogen that causes wheat and barley crown rot. In this study, we performed a genome-wide survey for F. pseudograminearum homeobox genes, and 11 FpHtfs were identified and characterized. Domain analyses revealed that all of these proteins contain a complete homeobox domain that contains three helices. Expression profiles of FpHtf genes at different pathogen stages showed that six FpHtf genes were induced during infection. Further, we generated and characterized FpHtf3 deletion mutants in F. pseudograminearum, showing it was essential for virulence. These results indicated that members of the homeobox gene family are likely involved in F. pseudograminearum pathogenicity. Our work also provides a useful foundation for further studies on the complexity and function of the homeobox gene family in F. pseudograminearum.


Assuntos
Fusarium , Genes Homeobox , Fusarium/genética , Fusarium/metabolismo , Doenças das Plantas/microbiologia , Virulência/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA