Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Heliyon ; 10(12): e33132, 2024 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-39022094

RESUMO

Background: Previous studies have shown that serotonin and its receptors are widely distributed in mammalian reproductive tisssues and play an important role in embryonic development. However, the specific effects of the serotonergic system on embryonic arrest (EA) and the underlying mechanism require further investigation. Methods: Chorionic villi were collected from patients with EA and healthy pregnant women. Western blotting (WB) and immunohistochemistry (IHC) were used to detect serotonin receptor 1B (HTR1B) levels and evaluate mitochondrial function. Additionally, HTR-8/SVneo cells were transfected with an HTR1B overexpression plasmid. Quantitative real-time polymerase chain reaction(qRT-PCR), Cell Counting Kit-8 (CCK-8), and wound healing assays were utilized to evaluate mitophagy level, cell proliferation and cell migration, respectively. Results: We discovered elevated HTR1B levels in the chorionic villi of the patients with EA compared to controls. Concurrently, we observed enhanced levels of nucleus-encoded proteins including mitofilin, succinate dehydrogenase complex subunit A (SDHA), and cytochrome c oxidase subunit 4 (COXIV), along with the mitochondrial fusion protein optic atrophy 1(OPA1), fission proteins mitochondrial fission protein 1(FIS1) and mitochondrial fission factor (MFF) in the EA group. Additionally, there was an excessive mitophagy levels in EA group. Furthermore, a notable activation of mitogen-activated protein kinase (MAPK) signaling pathway proteins including extracellular regulating kinase (ERK), c-Jun N-terminal kinase (JNK), and P38 was observed in the EA group. By overexpressing HTR1B in HTR-8/SVneo cells, we observed a significant reduction in cell proliferation and migration. HTR1B overexpression also caused an increase in levels of SDHA and FIS1, as well as an upregulation of mitophagy. Notably, the ERK inhibitor U0126 effectively mitigated these effects. Conclusion: These findings show that HTR1B influences mitochondrial homeostasis, promoting excessive mitophagy and impairing cell proliferation and migration by activating the MAPK signalling pathway during post-implantation EA. Therefore, HTR1B may serve as a potential therapeutic target for patients with EA.

2.
Reprod Sci ; 2024 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-39060751

RESUMO

Stress is an emotional state caused by an unexpected external environmental change or stimulus, and several experiments have demonstrated its negative impact on ovarian function, ultimately affecting reproductive ability. Melatonin (MT) has been shown to facilitate oocyte maturation and enhance ovarian function by regulating mitochondrial function. However, the specific effect and underlying molecular mechanisms of MT on stress-induced ovarian dysfunction remain largely unknown. In this study, we established a mouse model of chronic unpredictable mild stress (CUMS) to investigate its impact on ovarian function. Our findings revealed that CUMS led to premature ovarian insufficiency (POI) in mice, characterized by a reduction in follicle numbers and decreased levels of anti-Müllerian hormone (AMH) and bone morphogenetic protein 15 (BMP15). Furthermore, CUMS caused decreased expression of mitochondrial fission protein 1 (FIS1) and enhanced level of mitochondrial fusion protein optic atrophy 1(OPA1), mitofusin1(MFN1), as well as nucleus-encoded protein succinate dehydrogenase complex A (SDHA), reflecting mitochondrial dyshomeostasis. Additionally, CUMS resulted in excessive autophagy and apoptosis. However, MT reversed these effects and improved ovarian damage. Importantly, the protective effects of MT were mediated through the inhibition of the eIF2α-AFT4 pathway. Overall, this study provides valuable insights into the treatment of POI caused by CUMS.

3.
J Phys Condens Matter ; 36(19)2024 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-38295435

RESUMO

To solve the problem of adhesion of aluminum fluid to the inner wall of the vacuum ladle in the aluminum electrolysis industry, molecular dynamics simulation is performed to research the wetting behavior of Al droplets on the surfaces of theα-Al2O3substrates C (0001), M (11-00), and R (11-02) at 1073 K. Meanwhile, the adhesion characteristics of the Al droplet are evaluated by the potential of the mean force (PMF) for the separation of the Al droplets from different surfaces of theα-Al2O3substrate. The results show that the wetting behavior of Al droplets on theα-Al2O3substrate is influenced by the different crystallographic orientations. The diffusion of Al droplets in thex-o-yplane of the substrate exhibits isotropic. The PMF and the interfacial potential energy reveal that the magnitude of the adhesion work in the solid-liquid separation of Al droplets fromα-Al2O3substrates follows the order C (0001) > R (11-02) > M (11-00). These findings characterize the wetting properties and adhesion behavior of Al droplets on an atomic scale and provide a theoretical basis for the selection of materials for the inner wall of the vacuum ladle.

4.
J Clin Med ; 11(24)2022 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-36555999

RESUMO

Chemotherapeutics' development has enhanced the survival rate of cancer patients; however, adverse effects of chemotherapeutics on ovarian functions cause fertility loss in female cancer patients. Cisplatin (CP), an important chemotherapeutic drug for treating solid tumors, has adversely affected ovarian function. Melatonin (MT) has been shown to have beneficial effects on ovarian function owing to its antioxidative function. In this research, an animal model was established to explore the effect of MT on CP-induced ovarian damage. Immunohistochemical analysis and Western blot were also used to explore its mechanism. This study reported that MT protects mouse ovaries from CP-induced damage. Specifically, MT significantly prevented CP-induced ovarian reserve decline by maintaining AMH and BMP15 levels. We also found that MT ameliorated CP-induced cell cycle disorders by up-regulating CDC2 expression, and inhibited CP-induced ovarian inflammation by decreasing IL-1ß and IL-18 levels. Moreover, MT protected the ovary from CP-induced mitochondrial damage, as reflected by restoring mitochondria-related protein expression. Furthermore, CP caused ovarian apoptosis, as indicated by up-regulated BAX expression. MT was also shown to activate the MAPK pathway. Our results showed that MT could ameliorate ovarian damage induced by CP, implying that MT may be a viable alternative to preserve female fertility during CP chemotherapy.

5.
Commun Biol ; 5(1): 1108, 2022 10 19.
Artigo em Inglês | MEDLINE | ID: mdl-36261606

RESUMO

Mealybugs are highly aggressive to a diversity of plants. The waxy layer covering the outermost part of the integument is an important protective defense of these pests. However, the molecular mechanisms underlying wax biosynthesis in mealybugs remain largely unknown. Here, we analyzed multi-omics data on wax biosynthesis by the cotton mealybug, Phenacoccus solenopsis Tinsley, and found that a fatty acyl-CoA reductase (PsFAR) gene, which was highly expressed in the fat bodies of female mealybugs, contributed to wax biosynthesis by regulating the production of the dominant chemical components of wax, cuticular hydrocarbons (CHCs). RNA interference (RNAi) against PsFAR by dsRNA microinjection and allowing mealybugs to feed on transgenic tobacco expressing target dsRNA resulted in a reduction of CHC contents in the waxy layer, and an increase in mealybug mortality under desiccation and deltamethrin treatments. In conclusion, PsFAR plays crucial roles in the wax biosynthesis of mealybugs, thereby contributing to their adaptation to water loss and insecticide stress.


Assuntos
Hemípteros , Inseticidas , Animais , Hemípteros/genética , Aldeído Oxirredutases/genética , Gossypium/genética , Água
6.
Front Endocrinol (Lausanne) ; 12: 779183, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34867826

RESUMO

More than 10% of women suffer from endometriosis (EMT) during their reproductive years. EMT can cause pain and infertility and requires further study from multiple perspectives. Previous reports have indicated that an increase inapolipoprotein E (ApoE) may be associated with a lower number of retrieved mature oocytes in older women, and an association between ApoE and spontaneous pregnancy loss may exist in patients with EMT. The purpose of this study was to investigate the existence of an increase in ApoE in follicular fluid (FF) and the possible relationship between ApoE and EMT in Chinese women. In the current study, 217 Chinese women (111 control subjects and 106 EMT patients) were included. The ApoE genotypes were identified by Sanger sequencing. We found that ApoE expression in FF was higher in patients with EMT than in the control group. In addition, a significant difference in ApoE4 carriers (ϵ3/ϵ4, ϵ4/ϵ4) was found between the control subjects and the patients with EMT. Furthermore, a nonparametric test revealed significant differences in the numbers of blastocysts and high-quality blastocysts, but not the hormone levels of FSH, LH, and E2, between the two groups. We also established a multifactor (BMI, high-quality blastocysts, and ϵ4) prediction model with good sensitivity for identifying patients who may suffer from EMT. Our results demonstrate that ApoE expression in FF is increased in EMT, the ApoE-ϵ4 allele is significantly linked to EMT, and a combined analysis of three factors (BMI, high-quality blastocysts, and ϵ4) could be used as a predictor of EMT.


Assuntos
Apolipoproteínas E/genética , Apolipoproteínas E/metabolismo , Endometriose , Líquido Folicular/metabolismo , Doenças Peritoneais , Adulto , Estudos de Casos e Controles , Contagem de Células , China/epidemiologia , Endometriose/epidemiologia , Endometriose/genética , Endometriose/metabolismo , Feminino , Estudos de Associação Genética , Genótipo , Humanos , Infertilidade Feminina/diagnóstico , Infertilidade Feminina/genética , Infertilidade Feminina/metabolismo , Infertilidade Feminina/patologia , Recuperação de Oócitos , Oócitos , Reserva Ovariana/genética , Doenças Peritoneais/epidemiologia , Doenças Peritoneais/genética , Doenças Peritoneais/metabolismo , Prognóstico , Regulação para Cima/genética , Adulto Jovem
7.
Mol Ecol Resour ; 20(6): 1733-1747, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-33460249

RESUMO

Mealybugs (Hemiptera: Pseudococcidae) are economically important agricultural pests with several compelling biological phenomena including paternal genome elimination (PGE). However, limited high-quality genome assemblies of mealybugs hinder a full understanding of this striking and unusual biological phenomenon. Here, we generated a chromosome-level genome assembly of cotton mealybug, Phenacoccus solenopsis, by combining Illumina short reads, PacBio long reads and Hi-C scaffolding. The assembled genome was 292.54 Mb with a contig N50 of 489.8 kb and a scaffold N50 of 49.0 Mb. Hi-C scaffolding assigned 84.42% of the bases to five chromosomes. A total of 110.75 Mb (37.9%) repeat sequences and 11,880 protein-coding genes were predicted. The completeness of the genome assembly was estimated to be 95.5% based on BUSCO genes. In addition, 27,086 (95.3%) full-length PacBio transcripts were uniquely mapped to the assembled scaffolds, suggesting the high quality of the genome assembly. We showed that cotton mealybugs lack differentiated sex chromosomes by analysing genome resequencing data of males and females. DAPI staining confirmed that one chromosome set in males becomes heterochromatin at an early embryo stage. Chromatin immunoprecipitation assays with sequencing analysis demonstrated that the epigenetic modifications H3K9me3 and H3K27me3 are distributed across the whole genome in males, suggesting that these two modifications might be involved in maintaining heterochromatin status. Both markers were more likely to be distributed in repeat regions, while H3K27me3 had higher overall enrichment. Our results provide a valuable genomic resource and shed new light on the genomic and epigenetic basis of PGE in cotton mealybugs.


Assuntos
Genoma de Inseto , Hemípteros , Animais , Cromossomos , Epigênese Genética , Feminino , Genômica , Masculino , Filogenia
8.
Pest Manag Sci ; 75(5): 1370-1382, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30379402

RESUMO

BACKGROUND: The small brown plant hopper (SBPH), Laodelphax striatellus Fallén, is one of the most destructive pests on rice. This pest transmits rice stripe virus (RSV) both horizontally and vertically, leading to major yield and economic losses in rice production. However, the way that RSV particles enter oocytes of SBPH remains largely unknown. Thus, identification of key factors involved in the interaction between SBPH and RSV in the ovary is crucial. RESULTS: Transcriptome of non-viruliferous (NV) or high viruliferous (HV) SBPH ovaries at 24 and 48 h of emergence was sequenced. Differentially expressed genes analysis showed that vitellogenin receptor was significantly highly expressed in the ovary of the HV SBPH strains compared to NV strains. Quantitative real-time polymer chain reaction showed that the vitellogenin receptor in L. striatellus (LsVgR) was highly expressed in the ovaries of female adults and maintained a high level of expression at the early stage of ovary development. By using RNA interference, the expression of LsVgR in the ovaries of the HV strain was significantly decreased by 98.1%. RSV titer was reduced by 60.9% as quantified by viral RNA3 intergenic region and the transcripts of nucleocapsid protein gene (CP) reduced by 46.3%. The numbers of offspring hatched were significantly reduced in dsRNA-treated groups. The transcripts of CP were not affected by silencing LsVgR, whereas the abundance of RNA-dependent RNA polymerase increased by 15-fold in the member of surviving progenies. CONCLUSION: Our results suggest that vitellogenin receptor participates in regulating RSV replication during oogenesis. © 2018 Society of Chemical Industry.


Assuntos
Proteínas do Ovo/metabolismo , Hemípteros/fisiologia , Hemípteros/virologia , Oogênese , Receptores de Superfície Celular/metabolismo , Tenuivirus/fisiologia , Animais , Feminino , Regulação da Expressão Gênica , Hemípteros/metabolismo , Masculino , Ovário/metabolismo , Ovário/fisiologia , Filogenia , Testículo/metabolismo , Testículo/fisiologia , Replicação Viral
9.
Plant Biotechnol J ; 17(2): 461-471, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30044049

RESUMO

Rice stem borer (RSB, Chilo suppressalis) is an insect pest that causes huge economic losses every year. Control efforts rely heavily on chemical insecticides, which leads to serious problems such as insecticide resistance, environment pollution, and food safety issues. Therefore, developing alternative pest control methods is an important task. Here, we identified an insect-specific microRNA, miR-14, in RSB, which was predicted to target Spook (Spo) and Ecdysone receptor (EcR) in the ecdysone signalling network. In-vitro dual luciferase assays using HEK293T cells confirmed the interactions of Csu-miR-14 with CsSpo and with CsEcR. Csu-miR-14 exhibited high levels of expression at the end of each larval instar stage, and its expression was negatively correlated with the expression of its two target genes. Overexpression of Csu-miR-14 at the third day of the fifth instar stage led to high mortality and developmental defects in RSB individuals. We produced 35 rice transformants to express miR-14 and found that three lines had a single copy with highly abundant miR-14 mature transcripts. Feeding bioassays using both T0 and T1 generations of transgenic miR-14 rice indicated that at least one line (C#24) showed high resistance to RSB. These results indicated that the approach of miRNAs as targets has potential for improving pest control methods. Moreover, using insect-specific miRNAs rather than protein-encoding genes for pest control may prove benign to non-insect species, and thus is worthy of further exploration.


Assuntos
MicroRNAs/metabolismo , Mariposas/fisiologia , Oryza/genética , Controle Biológico de Vetores/métodos , Doenças das Plantas/imunologia , Animais , Feminino , Células HEK293 , Humanos , Resistência a Inseticidas , Inseticidas/farmacologia , Larva , Masculino , MicroRNAs/genética , Mariposas/crescimento & desenvolvimento , Oryza/imunologia , Oryza/parasitologia , Doenças das Plantas/parasitologia , Plantas Geneticamente Modificadas
10.
BMC Genomics ; 18(1): 848, 2017 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-29110701

RESUMO

BACKGROUND: Simple sequence repeats (SSR), also called microsatellites, have been widely used as genetic markers, and have been extensively studied in some model insects. At present, the genomes of more than 100 insect species are available. However, the features of SSRs in most insect genomes remain largely unknown. RESULTS: We identified 15.01 million SSRs across 136 insect genomes. The number of identified SSRs was positively associated with genome size in insects, but the frequency and density per megabase of genomes were not. Most insect SSRs (56.2-93.1%) were perfect (no mismatch). Imperfect (at least one mismatch) SSRs (average length 22-73 bp) were longer than perfect SSRs (16-30 bp). The most abundant insect SSRs were the di- and trinucleotide types, which accounted for 27.2% and 22.0% of all SSRs, respectively. On average, 59.1%, 36.8%, and 3.7% of insect SSRs were located in intergenic, intronic, and exonic regions, respectively. The percentages of various types of SSRs were similar among insects from the same family. However, they were dissimilar among insects from different families within orders. We carried out a phylogenetic analysis using the SSR frequencies. Species from the same family were generally clustered together in the evolutionary tree. However, insects from the same order but not in the same family did not cluster together. These results indicated that although SSRs undergo rapid expansions and contractions in different populations of the same species, the general genomic features of insect SSRs remain conserved at the family level. CONCLUSION: Millions of insect SSRs were identified and their genome features were analyzed. Most insect SSRs were perfect and were located in intergenic regions. We presented evidence that the variance of insect SSRs accumulated after the differentiation of insect families.


Assuntos
Sequência Conservada/genética , Genoma de Inseto/genética , Genômica , Repetições de Microssatélites/genética , Animais , Motivos de Nucleotídeos/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA