Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Environ Sci Pollut Res Int ; 30(12): 33598-33608, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36484942

RESUMO

Land use is an effective way to reduce carbon emission in the recycling process of municipal sludge compost; meanwhile, heavy metals (HMs) in the sludge can be phytoextracted by ornamental plants. As an eco-friendly soil amendment, citric acid (CA) has been reported to be of great potential aid to phytoremediation, and its effect on ryegrass (Lolium perenne L.) extraction of HMs (Zn, Ni, Pb, Cu, and Cd) from municipal sewage sludge compost-amended (MSSC) soils has been investigated through pot experiments in the study. The growth of ryegrass was significantly promoted under 2 and 4 mmol kg-1 CA treatments. The concentrations of HMs in MSSC soil after 45-day planting were significantly reduced ([Formula: see text]), and they were further reduced except for Cu while CA treated. The acid-extractable fraction of HMs in the soil was increased significantly as CA treated, and further improvement could be found when CA dose increased, which was due to the decreased soil pH and the complexation of CA with metal ions. The phytoremediation factor (PRF) was proposed to assess the phytoremediation efficiency, which was obtained as a ratio of the product of the biomass and metal concentration of plant shoot between the CA-treated group and the control group. When the CA dose was 6 mmol kg-1, the average PRF of five heavy metals reached 2.29, and Cd was the highest (3.72), demonstrating that CA had great promotion on phytoremediation of heavy metals. This study made a contribution to the research of phytoremediation in sludge land use by demonstrating ryegrass as an ideal bioaccumulator for heavy metals, especially for Cd.


Assuntos
Compostagem , Lolium , Metais Pesados , Poluentes do Solo , Esgotos , Solo , Cádmio , Ácido Cítrico , Poluentes do Solo/análise , Metais Pesados/análise
2.
Sci Total Environ ; 854: 158539, 2023 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-36075407

RESUMO

The accumulation and volatilization of Se by algae in surface water are important parts of the biogeochemical cycle of selenium but are also variable and complex. Experiments with 5-8 day of exposure under various temperatures, solution pH values, lighting regimes, and different initial Se concentrations were carried out to study the change in Se accumulation and volatilization behavior of algae. The study showed that algae accumulated and volatilized more Se under harsher environments, such as a lower pH, a shorter lighting time, and a higher Se load. The maximum average daily volatilization rate of Se was 234 ± 23 µg Se (g algae·d)-1, much greater than the values of previous studies. Therefore, in some Se-polluted water environments, when the pH of lakes is acidic, Se emissions to the atmosphere are much higher than currently estimated. Both the accumulation rate (Raccu) and volatilization rate (Rvol) of Se by algae were significantly negatively correlated with final pH, final OD, and residual Se in solution (Cres). Moreover, multiple linear regression equations were used to estimate the rates of Se accumulation and volatilization. This study provides theoretical basis data to quantify the contribution of selenium metabolism by algae to selenium biogeochemistry and a technical reference for the treatment of Se-containing wastewater.


Assuntos
Microalgas , Selênio , Ácido Selenioso , Microalgas/metabolismo , Selênio/metabolismo , Volatilização , Plantas/metabolismo , Lagos , Água
3.
Toxics ; 11(1)2022 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-36668769

RESUMO

The development of phytoremediation by garden plants is an effective way to deal with the dilemma of municipal sewage sludge disposal. In this study, two ornamental plants were used as phytoremediation plants to rehabilitate heavy-metal-contaminated municipal sewage sludge in field experiments, and the role of exogenous phytohormone IAA was also tested. Ornamental plants Loropetalum chinense var. rubrum (L. rubrum) and Rhododendron pulchrum (R. pulchrum) adapted well to the artificial soil made of municipal sewage sludge, and the concentrations of Cu, Zn, Pb, and Ni were decreased by 7.29, 261, 20.2, and 11.9 mg kg−1, respectively, in the soil planted with L. rubrum, and 7.60, 308, 50.1, and 17.7 mg kg−1, respectively, in the soil planted with R. pulchrum, accounted for 11−37% of the total amounts and reached significant levels (p < 0.05), except Cd. The concentration of Pb in all parts of the two ornamental plants was increased, as well as most heavy metals in L. rubrum root. As a result, three months after transplant, the phyto-extraction amounts in L. rubrum were 397, 10.9, and 1330 µg for Ni, Cd, and Pb, respectively, increased by 233% to 279%. The phyto-extraction amount in R. pulchrum were 1510, 250, and 237 µg for Zn, Pb, and Cu, respectively, increased by 143% to 193%. These results indicated a potential to remediate heavy metals of the two ornamental plants, especially L. rubrum. The results of correlation analysis implied that the interaction of heavy metals in the plant itself played an important role in the uptake of heavy metals. This seemed to explain why applying IAA in the experiment had little effect on plant growth and phytoremediation of heavy metals. This study provided a green and feasible idea for the proper disposal of municipal sewage sludge.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA