RESUMO
Common digestive precancerous lesions, including oral potentially malignant disorders (OPMDs), gastric ulcers and colorectal adenoma, harbor high risk of cancerous transformation. Early intervention of these lesions is significant to prevent carcinogenesis and improve patients' prognosis. Lycopene, a carotenoid predominantly accumulated in tomatoes, is clinically recommended with its cis structure; as lycopene harbors the most potent antioxidative effects among carotenoids, its chemopreventive effects on the premalignant lesions is noted. Despite several reviews have assessed lycopene's efficacy for OPMDs, emerging studies have reported varying efficacy for digestive precancerous lesion with no comprehensive summary. Therefore, this review initially evaluates the efficacy and underlying mechanisms of lycopene for management of digestive precancerous lesions. According to the included studies, lycopene may show high promise in the management of digestive precancerous lesions, such as relieving mouth opening and burning sensation of oral submucous fibrosis (OSF), presenting potentially equivalent efficacy on managing oral lichen planus (OLP) as steroids and alleviating gastrointestinal precancers' symptoms, meanwhile lowering colon cancer risk. Moreover, its mechanisms for managing digestive precancerous lesions are concretely summarized, including anti-oxidative stress effects, anti-inflammatory response and regulation of cell proliferation and apoptosis, especially its modifications on TLR4/TRIF/NF-κB signaling pathway and p53-dependent cell cycle control and apoptosis. More studies are warranted to confirm its long-term efficacy and preventive role against malignant transformation of digestive precancerous lesions as evidence is insufficient.
RESUMO
Organic compost application plays an important role in improving the fertility of Mollisol. However, the effects of different organic composts on carbon sequestration varies greatly and its internal mechanism are unclear. We conducted a field experiment to explore the residual proportion of different organic composts and their effects on carbon emissions in dryland Mollisol in Northeast China. There were a total of seven treatments, including chemical fertilizer control (SNF), organic composts from cattle excreta (CRH), sheep excreta (SHP), chicken excreta (CKN), residue after corn starch production (BCS), residue with crop straws (HRS) and mushroom residue (WMC). We monitored annual soil CO2 flux by static chamber method, as well as the changes of environmental factors and soil dissolved carbon and nitrogen. The regulatory mechanism of organic component characteristics on carbon residual porprotion of organic composts were examined by neural network analysis. The results showed that compared with the SNF treatment, soil dissolved organic carbon (DOC) and extractable organic nitrogen increased by 26.3%-103.5% and 21.4%-150.0%, respectively. The aromaticity of soil DOC was significantly reduced. Heterotrophic respiration flux was mainly affected by soil temperature and DOC content, while its temperature sensitivity was significantly reduced in the CKN treatment. Annual accumulation of heterotrophic respiration increased from 203 g·C·m-2 of the control to 234-334 g·C·m-2 under treatments with organic composts applications, with the CKN and HRS treatments showing the strongest impact. The annual carbon residual proportion of different organic composts in Mollisol was in an order of CRH (91.2%)> WMC (82.9%)> BCS (82.6%)> SHP (78.1%)> CKN (70.2%)> HRS (69.3%). Hemicellulose content and C/N of organic composts were the key factors, which explained 58.8% and 32.9% of the total variations of carbon residual proportion. Organic compost from cattle excreta had higher residual proportion due to lower C/N, hemicellulose content and soluble polyphenol content, and thus did not significantly affect Mollisol heterotrophic respiration. Therefore, the application of organic compost from cattle excreta was more efficient to improve organic carbon in dryland Mollisol.
Assuntos
Dióxido de Carbono , Compostagem , Solo , Solo/química , Dióxido de Carbono/análise , Dióxido de Carbono/metabolismo , Compostagem/métodos , China , Compostos Orgânicos/análise , Animais , Fertilizantes , Carbono/análise , Carbono/metabolismo , Esterco/análise , Nitrogênio/análise , Nitrogênio/metabolismo , EcossistemaRESUMO
Cancer constitutes a significant threat to patients' lives worldwide. Immunotherapy, particularly immune checkpoint inhibitors (ICIs) that boost antitumor immunity by targeting immune checkpoint components, has emerged as a promising strategy for its treatment in recent years. However, the objective response rates of the ICIs are unsatisfactory. As the primary route, systemic administration of ICIs is often accompanied by immune-related adverse events. Local delivery of ICIs serves as a potential therapeutic strategy that can improve the efficacy while simultaneously reducing side effects through precise drug release at the tumor site. Initial validation of direct local application of ICIs for tumors in clinical trials has indicated reduced side effects and improved efficacy, while low bioavailability remains a challenge. Furthermore, research on various carriers, including nanoparticles, microneedles, hydrogels, combined platforms, and implantable devices for local release of ICIs has exhibited applying potential in treating murine tumors, among which combined platforms such as combined hydrogel system hold the highest promise due to their encompassment of the advantages of multiple carriers. These carriers, by incorporating ICIs and other therapeutics, could manage cancers more potently, which needs to be confirmed in clinical trials after the refinement of their biocompatibility. This review summarizes the latest research advancements regarding local administration of ICIs, with a particular focus on the carriers for local delivery as well as the combination therapies, thus providing novel insights and research guidance for scholars to enhance the efficacy of locally delivered ICIs on managing multiple cancers in the future.
RESUMO
Ischemia/reperfusion (I/R) injury has been demonstrated to exert a significant role in acute myocardial infarction (AMI), which constitutes a crucial cause of AMI. Ferroptosis represents a novel form of cell death that is intimately linked to myocardial ischemia-reperfusion (MIR) injury. Urolithin A (UA), an intestinal metabolite of ellagitannins, has not been fully elucidated for its role in MIR injury. In the present study, we analyzed the effects of UA on ischemia-reperfusion-induced oxidative stress and ferroptosis both in vitro and in vivo, and explored the potential mechanisms of UA action. The results indicated that UA was capable of protecting the heart from ischemia-reperfusion injury and enhancing cardiac function both in vitro and in vivo. In addition, UA also attenuated oxidative stress, mitochondrial damage, and ferroptosis during MIR. Mechanistically, UA not only augmented the Nrf2 expression but also promoted Nrf2 entry into the nucleus and activated the downstream antioxidant defense system. Moreover, after the inhibition of Nrf2, the myocardial protective function of UA was lost, and its function of attenuating oxidative stress and ferroptosis was suppressed. In conclusion, we found that UA protected the heart from ischemia-reperfusion injury by attenuating oxidative stress and ferroptosis through the Nrf2 signaling pathway, suggesting that UA might be a potential therapeutic agent for the treatment of AMI.
RESUMO
PURPOSE: Patients in the intensive care unit (ICU) are at a high risk of developing incontinence-associated dermatitis (IAD), the incidence and severity of which are positively related to pressure injuries, thus affecting nursing quality indicators. This quality improvement project aimed to decrease the severity and incidence of IAD, with a focus on enhancing awareness among nursing staff. DESIGN: This 36-month project was implemented via the Plan-Do-Study-Act (PDSA) model. SUBJECTS: and setting: Included staff members worked in the ICUs (central and emergency ICUs) at a Grade A tertiary hospital in Suzhou (South of Jiangsu), China. METHODS: The quality improvement project included three main procedures: (1) formulating and implementing a modified prevention and treatment nursing protocol for early structured skin care with perineum ventilation, formulating a guidance sheet for incontinence nursing care; (2) organizing training and assessments of theories and skills, including three special sections on incontinence care training (theoretical knowledge, project process, video watching), skills training for nursing staff, and an incontinence nursing workshop to engage and evaluate all staff; (3) annual analysis and discussion of nursing quality control. RESULTS: Following project completion, there was a decrease in the overall incidence of IAD. Moreover, ICU nurses may attach more importance/awareness to IAD. CONCLUSIONS: This project successfully reduced the incidence of IAD among ICU patients.
RESUMO
In this study, high-throughput sequencing (HTS) technology was used to investigate the composition and diversity of endophytic bacteria and their effects on succinic acid biosynthesis in P. ternata tubers from three different geographical locations (MS, SL, and ZT). A total of 1777 amplicon sequence variants (ASVs) were annotated, and the diversity and composition of endophytic bacteria in P. ternata tubers were significantly different among different regions. The ZT samples presented the highest α diversity, and the Shannon diversity, richness, and Pielou evenness index were all ZT > MS > SL. Co-occurrence network analysis revealed that endophytic bacterial groups such as Stenotrophomonas, Pseudomonas, Mycobacterium, and Chryseomicrobium were key groups in the endophytic bacterial interaction network, indicating that they play a role in maintaining community stability. In addition, some endophytic bacteria were associated with the biosynthesis of succinic acid, a key bioactive compound in P. ternata. The succinate content was positively correlated with the genera Brevundimonas, Ensifer, Nocardioides, and Paenibacillus, while it was negatively correlated with the genera Lentimicrobium, Anaerovorax, and Pajaroellobacter. These findings highlight the key role of endophytic bacteria in regulating the efficacy of P. ternata. These findings provide key information for further elucidating the mechanism by which endophytic bacteria affect the synthesis of bioactive compounds.
RESUMO
Tobacco bacterial wilt is a major limiting factor for tobacco production and development, and it is more likely to occur under perennial single cropping of tobacco. In recent years, the rotation of tobacco-radish has gradually become popular. Therefore, we studied the effects of years of tobacco-radish rotation on tobacco bacterial wilt occurrence and rhizosphere microorganisms. The results indicated that both SY and TY could significantly reduce the risk of tobacco bacterial wilt occurrence, and SY had the lowest disease index. The rotation of radish plants significantly increased the soil pH but decreased the contents of alkali-hydrolysed nitrogen and organic matter in the soil. Alkali-hydrolysed nitrogen and pH are the key factors affecting the composition of the bacterial community. Furthermore, radish rotation changed the composition of the soil microbial community, increased the diversity of the bacterial community, and significantly altered the bacterial community structure. At the genus level, the abundance of Sphingomonas species negatively correlated with Ralstonia increased significantly, while the relative abundance of Rhodanobacter species positively correlated with Ralstonia decreased significantly. Disease index, pH and available phosphorus were the main factors affecting the variation in different bacterial genera. The network analysis results showed that Ralstonia was less connected in the network than in the CK group, and the SY treatment group had a more complex bacterial network structure. Overall, 2 years of tobacco and radish rotation improved the bacterial community structure of the rhizosphere soil and alleviated the harm caused by tobacco bacterial wilt, which is highly important for the stability and health of the rhizosphere soil ecosystem.
RESUMO
In order to express the energy flow, motion flow, and control flow in wireless rechargeable sensor networks accurately and intuitively, and to maximize the charging benefit of MVs (mobile vehicles), a type of MTS-HACO (Mobile Transition Sequence Hybrid Ant Colony Optimization) is proposed. Firstly, node places are grouped according to the firing time of node's energy consumption transition to ensure that in each time slot, MV places only enable charging transitions for the node places with lower remaining lifetimes. Then, the FSOMCT (Firing Sequence Optimization of Mobile Charging Transition) problem is formulated under the constraints of MV places capacity, travelling arc weight, charging arc weight, and so on. The elite strategy and the Max-Min Ant Colony system are further introduced to improve the ant colony algorithm, while the improved FWA (fireworks algorithm) optimizes the path constructed by each ant. Finally, the optimal mobile charging transition firing sequence and charging times are obtained, ensuring that MVs have sufficient energy to return to the base station. Simulation results indicate that, compared with the periodic algorithm and the PE-FWA algorithm, the proposed method can improve charging benefit by approximately 48.7% and 26.3%, respectively.
RESUMO
Crimped wool in Tan sheep gradually transitions to straight wool after 35 days (the er-mao stage), which reduces its commercial value. To investigate the changes in wool proteins during this stage, we performed comparative proteomic analysis of the straight and crimped wool using tandem mass tag (TMT)-based quantification. The mean fur curvature (MFC) of crimped wool was significantly greater than that of straight wool (p < 0.001). We identified 1218 proteins between the two types of wool, including 50 keratins (Ks) and 10 keratin-associated proteins (KAPs). There were 213 differentially expressed proteins, including 13 Ks and 4 KAPs. Crimped wool showed relatively high abundances of KAP24-1, K84, K32, K82, and intermediate filament rod domain-containing protein (IRDC), whereas straight wool had relatively high abundances of K6A, K27, K80, KAP16-1, KAP27-1, and trichohyalin (TCHH). The expression levels of KAP16-1, KAP24-1, and KAP27-1 were related to the ratio of paracortex, which may be associated with wool crimp formation. Additionally, high expressions of TCHH, K27, and K6A in the inner root sheath (IRS) were linked to fiber fineness in straight wool. These findings provide insight into the overall expression and distribution patterns of Ks and KAPs, offering opportunities to improve wool quality and enhance its economic potential in the textile industry.
RESUMO
Apoptosis repressor with caspase recruitment domain (ARC) is a highly potent and multifunctional suppressor of various types of programmed cell death (PCD) (e.g. apoptosis, necroptosis, and pyroptosis) and plays a key role in determining cell fate. Under physiological conditions, ARC is predominantly expressed in terminally differentiated cells, such as cardiomyocytes and skeletal muscle cells. Its expression and activity are tightly controlled by a complicated system consisting of transcription factor (TF), non-coding RNA (ncRNA), and post-translational modification (PTM). ARC dysregulation has been shown to be closely associated with many chronic diseases, including cardiovascular disease, cancer, diabetes, and neurodegenerative disease. However, the detailed mechanisms of ARC involved in the progression of these diseases remain unclear to a large extent. In this review, we mainly focus on the regulatory mechanisms of ARC expression and activity and its role in PCD. We also discuss the underlying mechanisms of ARC in health and disease and highlight the potential implications of ARC in the clinical treatment of patients with chronic diseases. This information may assist in developing ARC-based therapeutic strategies for patients with chronic diseases and expand researchers' understanding of ARC.
Assuntos
Proteínas Reguladoras de Apoptose , Apoptose , Humanos , Doença Crônica , Proteínas Reguladoras de Apoptose/metabolismo , Neoplasias/metabolismo , Neoplasias/patologia , Neoplasias/genética , Doenças Cardiovasculares/metabolismo , Processamento de Proteína Pós-Traducional , Doenças Neurodegenerativas/metabolismo , Doenças Neurodegenerativas/genética , Domínio de Ativação e Recrutamento de Caspases , Diabetes Mellitus/metabolismo , Proteínas MuscularesRESUMO
Deep learning-based video denoising methods have achieved great performance improvements in recent years. However, the expensive computational cost arising from sophisticated network design has severely limited their applications in real-world scenarios. To address this practical weakness, we propose a multiscale spatio-temporal memory network for fast video denoising, named MSTMN, aiming at striking an improved trade-off between cost and performance. To develop an efficient and effective algorithm for video denoising, we exploit a multiscale representation based on the Gaussian-Laplacian pyramid decomposition so that the reference frame can be restored in a coarse-to-fine manner. Guided by a model-based optimization approach, we design an effective variance estimation module, an alignment error estimation module and an adaptive fusion module for each scale of the pyramid representation. For the fusion module, we employ a reconstruction recurrence strategy to incorporate local temporal information. Moreover, we propose a memory enhancement module to exploit the global spatio-temporal information. Meanwhile, the similarity computation of the spatio-temporal memory network enables the proposed network to adaptively search the valuable information at the patch level, which avoids computationally expensive motion estimation and compensation operations. Experimental results on real-world raw video datasets have demonstrated that the proposed lightweight network outperforms current state-of-the-art fast video denoising algorithms such as FastDVDnet, EMVD, and ReMoNet with fewer computational costs.
RESUMO
BACKGROUND: A history of abdominal surgery is considered a contraindication for laparoscopic procedures. However, the advancements in laparoscopic instruments and techniques have facilitated the performance of increasingly intricate operations, even in patients with prior abdominal surgeries. ICG fluorescence imaging technology offers advantages in terms of convenient operation and clearer intraoperative bile duct imaging, as confirmed by numerous international clinical studies on its feasibility and safety. The application of ICG fluorescence imaging technology in repeat laparoscopic biliary surgery, however, lacks sufficient reports. METHODS: The clinical data of patients who underwent elective reoperation of the biliary tract in our department between January 2020 and June 2022 were retrospectively analyzed. ICG was injected peripherally before the operation, and near-infrared light was used for 3-dimensional imaging of the bile duct during the operation. RESULTS: Altogether, 143 patients were included in this study and divided into the fluorescence and nonfluorescence groups according to the inclusion criteria. Among the 26 patients in the fluorescence group, cholangiography was successfully performed in 24 cases, and the success rate of intraoperative biliary ICG fluorescence imaging was 92.31%. The intraoperative biliary tract identification time was significantly different between the fluorescence and nonfluorescence groups, but no statistical difference was observed in the final operation method, operative time, and intraoperative blood loss between the 2 groups. Although there was no significant difference in the postoperative ventilation rate, incidence of bile leakage, and stone recurrence rate at 6 months postoperatively between the 2 groups (P>0.05), a significant difference in postoperative hospitalization days was observed (P=0.032). CONCLUSION: The application of ICG fluorescence imaging technology in laparoscopic reoperation of the biliary tract is useful for the early identification of the biliary tract during operation, thereby shortening the operative time and reducing the risk of damage to nonoperative areas. This approach also enhances the visualization of the biliary system and avoids secondary injury intraoperatively due to poor identification of the biliary system. This technique is safe for repeat biliary tract surgery and has a good application prospect.
RESUMO
BACKGROUND AND STUDY AIM: Gastric cancer (GC) is one of the most common gastrointestinal tumors characterized by aggressive development and poor prognosis. Circular RNAs (circRNAs) have been used as prognostic biomarkers and therapeutic targets in many cancers, including GC. Hsa_circ_0008667 is differentially expressed in GC; however, its function and clinical significance remained unelucidated. Therefore, this study aimed to investigate the role and significance of hsa_circ_0008667 in GC and its potential as a biomarker and therapeutic target of GC. PATIENTS AND METHODS: Through quantitative reverse-transcription real-time PCR, hsa_circ_0008667 expression in GC tissues and cells were analyzed, followed by statistical analyses to assess the clinical significance. Cell Counting Kit-8 and Transwell assays were performed to examine the effects of hsa_circ_0008667 silencing on GC cell growth and metastasis. Additionally, correlation analysis was performed to assess the relationship between hsa_circ_0008667 and miR-9-5p, which was further validated through luciferase reporter assay. RESULTS: Hsa_circ_0008667 was considerably upregulated and tightly correlated with lymph node metastasis and the tumor-node-metastasis stage, which was predictive of poor prognosis in patients with GC. Hsa_circ_0008667 silencing suppressed GC cell proliferation, migration, and invasion. Furthermore, hsa_circ_0008667 negatively regulated miR-9-5p expression. MiR-9-5p downregulation enhanced GC malignancy and reversed hsa_circ_0008667 knockdown-mediated GC suppression. CONCLUSION: The findings of this study suggest hsa_circ_0008667 to be a prognostic biomarker and tumor promoter of GC via miR-9-5p modulation.
RESUMO
In this work, we synthesized composites of ferrous disulfide and tin disulfide with multi-walled carbon nanotubes (MWCNTs) using a straightforward hydrothermal method. The incorporation of carbon nanotubes significantly enhanced the dielectric loss capability of the composites. When the filling ratio of FeS2/SnS2@CNTs (20 wt%) in paraffin was 40%, the effective absorption bandwidth was 3.28 GHz, while the minimum reflection loss (RL) value was as high as -39.2 dB, which corresponded to a thickness of only 1.4 mm. This work reveals the potential research value of this material in terms of thin thickness, strong absorption and light mass.
RESUMO
BACKGROUND: The conversion of biomass into high value-added platform compounds is an important method of biomass utilization. The conversion of hemicellulose represented by xylan into furfural can not only reduce the consumption of fossil fuels, but also promotes the development and utilization of non-edible biomass resources. In this study, a bifunctional solid-acid catalyst prepared from agricultural and forestry waste Pueraria (P. eduli) Residues was used to convert xylan into furfural in a biphasic system. RESULTS: In this study, P. eduli Residues was used as raw material to prepare a P. eduli Residues-based carbon solid-acid catalyst (PR/C-SO3H-Fe) by one-step sulfonation carbonization and impregnation. The catalyst catalyzes the conversion of xylan to furfural in a biphasic system (2-methyltetrahydrofuran/water). The physicochemical properties of the catalysts were characterized by X-ray powder diffraction, scanning electron microscopy, differential thermogravimetric analysis, Brunauer-Emmett-Teller surface area, Fourier transform infrared spectroscopy and ammonia temperature-programmed desorption. Subsequently, the experimental conditions were studied and optimized, such as metal species, iron ion concentration, reaction time and temperature, volume ratio of organic phase to water phase and ratio of substrate to catalyst. The results showed that under conditions of 160 °C, 50 mg catalyst, 100 mg xylan and 7 mL reaction solvent, the yield of furfural could reach 78.94% after 3 h of reaction. CONCLUSION: This study provides an effective research method for the conversion of xylan into furfural, and provides a reference for the catalytic conversion and utilization of hemicellulose in agricultural and forestry biomass. It also provides a feasible method for the resource utilization of agricultural and forestry waste. © 2024 Society of Chemical Industry.
RESUMO
Sodium-ion batteries (SIBs) have emerged as promising candidates for energy storage applications due to the abundance and low cost of sodium. However, the larger radius of sodium ions limits their diffusion kinetics within electrode materials and contributes to electrode volume expansion. Here, we successfully synthesized porous titanium carbide (TiC) nanoflowers through chemical vapor deposition (CVD). The TiC nanoflowers exhibit exceptional electrochemical performance as SIB anodes, with their porous structure enhancing the conductivity, mechanical stability, and Na-ion diffusion. The TiC nanoflowers demonstrate a high reversible specific capacity of 73.5 mAh g-1 at 1 A g-1 after 2500 cycles, corresponding to an impressive capacity retention of 80.81%. Additionally, we developed a full sodium-ion cell utilizing TiC nanoflowers as the anode and Na3V2(PO4)3 as the cathode, which demonstrates a substantial reversible capacity and outstanding cycling stability. Our work presents a promising strategy for synthesizing nanostructured TiC materials as anode electrodes for SIBs.
RESUMO
Biomarkers are not only of significant importance for cancer diagnosis and selection of treatment plans but also recently increasingly used for the evaluation of malignancy development and tumor heterogeneity. Large-size tumors from clinical patients can be unique and valuable sources for the study of cancer progression, particularly to the extent of intratumoral heterogeneity. In the present study, we obtained a series of post-surgery puncture samples from a breast cancer patient with a 4 × 3.5 × 2 cm tumor in its original size. Immunohistochemistry for Ki-67, COX-2, and CA IX was performed and the expression levels within the breast cancer tumor mass were evaluated in the reconstructed 3D models. To further evaluate the intratumoral heterogeneity, we performed high throughput whole transcriptome sequencing of 12 samples from different spatial positions within the tumor tissue. Comparing the reconstructed 3D distribution of biomarkers with projected tumor growth models, asymmetric and heterogeneous expansion of tumor mass was found to be possibly influenced by factors such as blood supply, inflammation and/or hypoxia stimulations, as suggested from the correlation between the results of Ki-67 and CA IX or COX-2 staining. Furthermore, high-throughput RNA sequencing data provided additional information for profiling the intratumoral heterogeneity and expanded the understanding of cancer progression. Digital technology for medical imaging once properly integrated with molecular pathology examinations will become particularly helpful in dissecting out in-depth information for precision medicine. We prospect that this approach, facilitated by rapidly advancing artificial intelligence, could provide new insights for clinical decision-making in the future. Strategies for the continuous development from the present study for better performance and application were discussed.
RESUMO
The conversion of plastic waste into valuable chemicals through innovative and selective nano-catalysts offers significant economic benefits and positive environmental impacts. However, our current understanding of catalyst design capable of achieving industrial-grade current densities is limited. Herein, we develop a self-supported amorphous-crystalline NiO electrocatalyst for the electrocatalytic upcycling of polyethylene terephthalate (PET) into formate and hydrogen (H2) fuel. The catalyst achieves an industrial current density of over 1 A cm-2 at 1.5 V vs. RHE, with an 80% Faradaic efficiency and a formate production rate of 7.16 mmol cm-2 h-1. In situ Raman spectroscopy, X-ray absorption spectroscopy, and density functional theory calculations reveal that the rapid transformation of amorphous-crystalline NiO into γ-NiOOH at the amorphous-crystalline interface provides a thermodynamic advantage for formate desorption, leading to the high activity required for industrial applications, which is difficult to achieve for fully crystalline NiO. A techno-economic analysis indicates that recycling waste PET using this catalytic process could generate a profit of $501 per ton. This work presents a cost-effective and highly efficient approach to promoting the sustainable utilization of waste PET.
RESUMO
BACKGROUND: Distiller's grains are a by-product of liquor production with a higher yield than liquor. Developing and utilizing distiller's grains well could alleviate the problem of scarce feed resources. Our present experiment was conducted with 6000 yellow-feathered broilers to study the effects of adding distiller's grains yeast cultures (DGYC) to the diet on growth performance and immunity of broilers. The broilers were divided into five groups, receiving different DGYC concentrations during two stages. Growth performance, intestinal microorganisms and immune organ development were measured. RESULTS: The results showed that groups B and D, supplemented with medium and high concentrations of DGYC, respectively, had significantly improved growth performance compared to the control group (P < 0.05). Group D also showed higher immune organ index (P < 0.01), increased serum total protein, high-density lipoprotein and immunoglobulin levels (P < 0.05) and lower levels of low-density lipoprotein, triglycerides, interleukin 1ß and tumor necrosis factor α (P < 0.05). Hematoxylin and eosin staining confirmed improved immune organ development in group D (P < 0.05). Furthermore, in high-concentration group D, levels of short-chain fatty acids (SCFA; acetic, propionic and butyric acids) in cecal chyme were significantly increased (P < 0.05). The richness (Chao1) and diversity (Faith-pd) index of cecal microbiota were significantly higher in group D compared to the control group (P < 0.05). The microbial composition in group D differed from the control and medium-concentration group B. Seven bacteria (Clostridia-UCG-014, UCG-009, DTU089, UCG-010, Campylobacter, Harryflintia, Shuttleworthia) showed significant differences (P < 0.05). After DGYC feeding, DTU089 decreased, while other SCFA-producing bacteria increased (P < 0.05). Subsequently, KEGG function and corresponding signal pathway predictions were performed on bacteria with significant differences. Group D exhibited a higher enrichment of immune function pathways (P < 0.01) and showed significant changes in four immune signaling pathways according to the signal pathway heatmap. CONCLUSION: Our data suggest that high concentrations of DGYC can be applied as a feed additive for broilers that promotes growth, improves intestinal health and enhances certain immunity. © 2024 Society of Chemical Industry.