Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Biol Pharm Bull ; 46(4): 574-585, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37005301

RESUMO

Methyl protodioscin (MPD), a furostanol saponin found in the rhizomes of Dioscoreaceae, has lipid-lowering and broad anticancer properties. However, the efficacy of MPD in treating prostate cancer remains unexplored. Therefore, the present study aimed to evaluate the anticancer activity and action mechanism of MPD in prostate cancer. 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT), wound healing, transwell, and flow cytometer assays revealed that MPD suppressed proliferation, migration, cell cycle, and invasion and induced apoptosis of DU145 cells. Mechanistically, MPD decreased cholesterol concentration in the cholesterol oxidase, peroxidase and 4-aminoantipyrine phenol (COD-PAP) assay, disrupting the lipid rafts as detected using immunofluorescence and immunoblot analyses after sucrose density gradient centrifugation. Further, it reduced the associated mitogen-activated protein kinase (MAPK) signaling pathway protein P-extracellular regulated protein kinase (ERK), detected using immunoblot analysis. Forkhead box O (FOXO)1, a tumor suppressor and critical factor controlling cholesterol metabolism, was predicted to be a direct target of MPD and induced by MPD. Notably, in vivo studies demonstrated that MPD significantly reduced tumor size, suppressed cholesterol concentration and the MAPK signaling pathway, and induced FOXO1 expression and apoptosis in tumor tissue in a subcutaneous mouse model. These results suggest that MPD displays anti-prostate cancer activity by inducing FOXO1 protein, reducing cholesterol concentration, and disrupting lipid rafts. Consequently, the reduced MAPK signaling pathway suppresses proliferation, migration, invasion, and cell cycle and induces apoptosis of prostate cancer cells.


Assuntos
Neoplasias da Próstata , Saponinas , Humanos , Masculino , Animais , Camundongos , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Linhagem Celular Tumoral , Transdução de Sinais , Saponinas/farmacologia , Neoplasias da Próstata/tratamento farmacológico , Neoplasias da Próstata/patologia , Proliferação de Células , Apoptose , Movimento Celular , Sistema de Sinalização das MAP Quinases , Proteína Forkhead Box O1/metabolismo
2.
Sensors (Basel) ; 21(9)2021 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-34066981

RESUMO

Compatibility, a critical issue between sensing material and host structure, significantly influences the detecting performance (e.g., sensitive, signal-to-noise ratio) of the embedded sensor. To address this issue in concrete-based infrastructural health monitoring, cement-based piezoelectric composites (piezoelectric ceramic particles as a function phase and cementitious materials as a matrix) have attracted continuous attention in the past two decades, dramatically exhibiting superior durability, sensitivity, and compatibility. This review paper performs a synthetical overview of recent advances in theoretical analysis, characterization and simulation, materials selection, the fabrication process, and application of the cement-based piezoelectric composites. The critical issues of each part are also presented. The influencing factors of the materials and fabrication process on the final performance of composites are further discussed. Meanwhile, the application of the composite as a sensing element for various monitoring techniques is summarized. Further study on the experiment and simulation, materials, fabrication technique, and application are also pointed out purposefully.

3.
Sci Rep ; 5: 18484, 2015 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-26673425

RESUMO

A novel microcapsule-based self-immunity system for reinforced concrete is proposed. Its feasibility for hindering the corrosion of steel rebar by means of lifting the threshold value of [Cl(-)]/[OH(-)] is discussed. Precisely controlled release behavior enables corrosion protection in the case of depassivation. The release process is characterized over a designated range of pH values, and its release characteristics of the microcapsules, triggered by decreasing pH value, are captured by observing that the core crystals are released when exposed to a signal (stimulus). The aim of corrosion protection of steel bar is achieved through the constantly-stabilized passive film, and its stability is promoted using continuous calcium hydroxide released from the microcapsule, restoring alkaline conditions. The test results exhibited that the release process of the microcapsules is a function of time. Moreover, the release rate of core materials could interact with environmental pH value, in which the release rate is found to increase remarkably with decreasing pH value, but is inhibited by high pH levels.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA