Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Plant Physiol ; 194(2): 902-917, 2024 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-37934825

RESUMO

Maize (Zea mays L.) is one of the most important crops worldwide. Photoperiod, light quality, and light intensity in the environment can affect the growth, development, yield, and quality of maize. In Arabidopsis (Arabidopsis thaliana), cryptochromes are blue-light receptors that mediate the photocontrol of stem elongation, leaf expansion, shade tolerance, and photoperiodic flowering. However, the function of maize cryptochrome ZmCRY in maize architecture and photomorphogenic development remains largely elusive. The ZmCRY1b transgene product can activate the light signaling pathway in Arabidopsis and complement the etiolation phenotype of the cry1-304 mutant. Our findings show that the loss-of-function mutant of ZmCRY1b in maize exhibits more etiolation phenotypes under low blue light and appears slender in the field compared with wild-type plants. Under blue and white light, overexpression of ZmCRY1b in maize substantially inhibits seedling etiolation and shade response by enhancing protein accumulation of the bZIP transcription factors ELONGATED HYPOCOTYL 5 (ZmHY5) and ELONGATED HYPOCOTYL 5-LIKE (ZmHY5L), which directly upregulate the expression of genes encoding gibberellin (GA) 2-oxidase to deactivate GA and repress plant height. More interestingly, ZmCRY1b enhances lodging resistance by reducing plant and ear heights and promoting root growth in both inbred lines and hybrids. In conclusion, ZmCRY1b contributes blue-light signaling upon seedling de-etiolation and integrates light signals with the GA metabolic pathway in maize, resulting in lodging resistance and providing information for improving maize varieties.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Criptocromos/genética , Criptocromos/metabolismo , Arabidopsis/metabolismo , Giberelinas/farmacologia , Giberelinas/metabolismo , Zea mays/genética , Zea mays/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Plântula/metabolismo , Hipocótilo , Transdução de Sinais , Luz , Regulação da Expressão Gênica de Plantas
2.
Plant Cell Rep ; 43(1): 26, 2023 Dec 29.
Artigo em Inglês | MEDLINE | ID: mdl-38155318

RESUMO

KEY MESSAGE: A single nucleotide mutation from G to A at the 201st position changed the 5' splice site and deleted 31 amino acids in the first exon of GaTFL1. Growth habit is an important agronomic trait that plays a decisive role in the plant architecture and crop yield. Cotton (Gossypium) tends to indeterminate growth, which is unsuitable for the once-over mechanical harvest system. Here, we identified a determinate growth mutant (dt1) in Gossypium arboreum by EMS mutagenesis, in which the main axis was terminated with the shoot apical meristem (SAM) converted into flowers. The map-based cloning of the dt1 locus showed a single nucleotide mutation from G to A at the 201st positions in TERMINAL FLOWER 1 (GaTFL1), which changed the alternative RNA 5' splice site and resulted in 31 amino acids deletion and loss of function of GaTFL1. Comparative transcriptomic RNA-Seq analysis identified many transporters responsible for the phytohormones, auxin, sugar, and flavonoids, which may function downstream of GaTFL1 to involve the plant architecture regulation. These findings indicate a novel alternative splicing mechanism involved in the post-transcriptional modification and TFL1 may function upstream of the auxin and sugar pathways through mediating their transport to determine the SAM fate and coordinate the vegetative and reproductive development from the SAM of the plant, which provides clues for the TFL1 mechanism in plant development regulation and provide research strategies for plant architecture improvement.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/genética , Gossypium/genética , Gossypium/metabolismo , Precursores de RNA/metabolismo , Nucleotídeos/genética , Nucleotídeos/metabolismo , Sítios de Splice de RNA , Mutação/genética , Flores , Açúcares/metabolismo , Aminoácidos/metabolismo , Ácidos Indolacéticos/metabolismo , Regulação da Expressão Gênica de Plantas/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Proteínas de Arabidopsis/genética
3.
PLoS One ; 16(4): e0249757, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33831102

RESUMO

Late embryogenesis abundant (LEA) proteins are members of a large and highly diverse family that play critical roles in protecting cells from abiotic stresses and maintaining plant growth and development. However, the identification and biological function of genes of Secale cereale LEA (ScLEA) have been rarely reported. In this study, we identified 112 ScLEA genes, which can be divided into eight groups and are evenly distributed on all rye chromosomes. Structure analysis revealed that members of the same group tend to be highly conserved. We identified 12 pairs of tandem duplication genes and 19 pairs of segmental duplication genes, which may be an expansion way of LEA gene family. Expression profiling analysis revealed obvious temporal and spatial specificity of ScLEA gene expression, with the highest expression levels observed in grains. According to the qRT-PCR analysis, selected ScLEA genes were regulated by various abiotic stresses, especially PEG treatment, decreased temperature, and blue light. Taken together, our results provide a reference for further functional analysis and potential utilization of the ScLEA genes in improving stress tolerance of crops.


Assuntos
Regulação da Expressão Gênica de Plantas/genética , Proteínas de Plantas/genética , Secale/genética , Mapeamento Cromossômico/métodos , Cromossomos de Plantas/genética , Perfilação da Expressão Gênica/métodos , Genoma de Planta/genética , Estudo de Associação Genômica Ampla/métodos , Estresse Fisiológico/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA