Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Front Chem ; 10: 854664, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35360531

RESUMO

Zeolite SAPO-34 has been widely used in the industry because of its special pore structure and wide distribution of acid sites in the pore channel. However, traditional SAPO-34 with a small pore size suffers from carbon deposition and deactivation in catalytic reactions, and its inability to catalytically convert bulky organic molecules limits its industrial application. Meanwhile, impurities of SAPO-5, which have weak acidity leading to rapid catalyst deactivation, appear in SAPO-34 zeolite. Therefore, it is of great significance to synthesize SAPO-34 zeolite with a mesoporous pore structure, which can significantly improve the transfer of molecules in zeolites. In this paper, SAPO-34 zeolite with a hierarchical pore structure was synthesized, and its hydrodesulfurization performance for 4,6-dimethyldibenzothiophene (4,6-DMDBT) was studied in a fixed bed reactor. The characteristic results show that BET-specific surface area, micropore volume, and mesoporous volume of synthesized SAPO-34 are 754 m2 g-1, 0.25, and 0.23 cm3 g-1 respectively, and the pore size is mainly concentrated at 4 nm. The catalytic conversion of 4,6-DMDMT with Co- and Mo-supported SAPO-34 is about 83%, which is much higher than the catalytic performance of Al2O3.

2.
Front Chem ; 8: 790, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33102434

RESUMO

With the demand of energy and re-utilization of wastes, the renewable lignocellulosic biomass, has attracted increasing and significant attention for alleviating the growing energy crisis and environment problems. As main components of lignocellulosic biomass, lignin, cellulose, and hemicellulose are connected by hydrogen bond to form a compact skeleton structure, resulting the trenchant condition of biomass pyrolysis. Also, pyrolysis products of above three main constituents contain a large amount of oxygenates that cause low heating value, high corrosiveness, high viscosity, and instability. Meanwhile, zeolites are of considerable significance to the conversion of lignocellulosic biomass to desirable chemical products on account of fine shape selectivity and moderate acid sites and strength. Among numerous zeolites, ZSM-5-based catalysts have been most extensively studied, and the acidity and porosity of ZSM-5 can be tuned by changing the content of Si or Al in zeolite. Beyond that, doping of other metal elements, such as Mn, Co, Ni, Ga, Ce, Pt, into ZSM-5 is also an efficient way to regulate the strength and density of acid sites in zeolite precisely. This review focused on the recent investigation of Ni-modified microporous ZSM-5 used in catalytic pyrolysis of lignin and cellulose. The application of metal-modified hierarchical ZSM-5 is also covered.

3.
Phys Chem Chem Phys ; 19(32): 21769-21776, 2017 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-28783182

RESUMO

Gas hydrate technology is considered as a promising technology in the fields of gas storage and transportation, gas separation and purification, seawater desalination, and phase-change thermal energy storage. However, to date, the technology is still not commercially used mainly due to the low gas hydrate formation rate and the low gas uptake. In this study, the effect of hydrate promoters on gas uptake was systematically studied and analyzed based on hydrate-based CH4 storage and CO2 capture from CO2/H2 gas mixture experiments. Raman spectroscopy, Fourier transform infrared spectroscopy (FTIR) and gas chromatography (GC) were employed to analyze the microstructures and gas compositions. The results indicate that the effect of the hydrate promoter on the gas uptake depends on the physical and chemical properties of the promoter and gas. A strong polar ionic promoter is not helpful towards obtaining the ideal gas uptake because a dense hydrate layer is easily formed at the gas-liquid interface, which hinders gas diffusion from the gas phase to the bulk solution. For a weak polar or non-polar promoter, the gas uptake depends on the dissolution characteristics among the different substances in the system. The lower the mutual solubility among the substances co-existing in the system, the higher the independence among the substances in the system; this is so that each phase has an equal chance to occupy the hydrate cages without or with small interactions, finally leading to a relatively high gas uptake.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA