RESUMO
BACKGROUND: Cerebral ischemia-reperfusion injury (CIRI) usually occurs during the treatment phase of ischemic disease, which is closely related to high morbidity and mortality. Promoting neurogenesis and synaptic plasticity are effective neural recovery strategies for CIRI. Astragaloside IV (AS-IV) has been shown to play a neuroprotective role in some neurological diseases. In the current study, we evaluated the effect and possible mechanism of AS-IV in CIRI rats. METHODS: The middle cerebral artery occlusion reperfusion (MCAO/R) model was established in rats to simulate the occurrence of human CIRI. First, we determined the cerebral injury on the 1st, 3rd, 5th and 7th day after cerebral ischemia-reperfusion (I/R) surgery by neurological deficit detection, TTC staining, TUNEL staining and Western blot analysis. Furthermore, rats were pre administered with AS-IV and then subjected to cerebral I/R surgery. Brains were collected on the 3rd day to evaluate the neuroprotective effect of AS-IV. RESULTS: Our results showed that on the 3rd day after I/R, the neurological impairment score and infarct volume were highest, the levels of apoptosis and expression of Caspase3 and Bax reached the peak. AS-IV treatment apparently attenuated neurological dysfunction, reduced infarct volume and pathological damage, promoted the neurogenesis, and alleviated the pathological damage caused by cerebral I/R involved in thickening and blurring of synaptic membranes, reduction of microtubules and synaptic vesicles, and loss of synaptic cleft. Our study also showed that AS-IV promoted the transcription and expression of the peroxisome proliferators-activated receptors γ (PPARγ) and brain-derived neurotrophic factor (BDNF), increased the expression of phosphorylation of tyrosine kinase receptor B (TrkB) and downstream PI3K/Akt/mTOR pathway proteins. Notably, when GW9662, an inhibitor of PPARγ was administered with AS-IV, the neuroprotective effect of AS-IV was reduced. CONCLUSIONS: These findings suggested that AS-IV has neuroprotective function in CIRI rats, and its molecular mechanism may depend on the phosphatidylinositide 3-kinase (PI3K)/protein kinase B (PKB)/Akt signalling pathway activated by PPARγ. AS-IV could be an effective therapeutic drug candidate for CIRI treatment.
Assuntos
Fármacos Neuroprotetores , PPAR gama , Ratos Sprague-Dawley , Traumatismo por Reperfusão , Saponinas , Triterpenos , Animais , Saponinas/farmacologia , Triterpenos/farmacologia , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/administração & dosagem , Traumatismo por Reperfusão/metabolismo , Traumatismo por Reperfusão/tratamento farmacológico , Masculino , Ratos , PPAR gama/metabolismo , Modelos Animais de Doenças , Isquemia Encefálica/metabolismo , Isquemia Encefálica/tratamento farmacológico , Apoptose/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Infarto da Artéria Cerebral Média/tratamento farmacológico , Infarto da Artéria Cerebral Média/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas Proto-Oncogênicas c-akt/efeitos dos fármacos , Fator Neurotrófico Derivado do Encéfalo/metabolismoRESUMO
BACKGROUND: Chimeric antigen receptor (CAR)-T cells face many obstacles in solid tumor therapy, including heterogeneous antigen expression and inefficient T cell persistence. Guanylyl cyclase C (GUCY2C) has been identified as a suitable tumor antigen for targeted therapy due to its intestinal-restricted expression pattern in normal tissues and steady overexpression in gastrointestinal tumors, especially colorectal cancer. An antigen-sensitive and long-lasting CAR-T cell targeting GUCY2C was investigated in this study. METHODS: Using constructed tumor cell lines with various GUCY2C expression densities, we screened out an antigen-sensitive single chain variable fragment (scFv) that enabled CAR-T cells to efficiently eradicate the GUCY2C lowly expressed tumor cells. CAR-T cells with different compositions of the hinge, transmembrane and costimulatory domains were also constructed for selection of the long-lasting CAR-T format with durable antitumor efficacy in vitro and in tumor-bearing mice. The underlying mechanism was further investigated based on mutation of the hinge and transmembrane domains. RESULTS: We found that the composition of the antigen-sensitive scFv, CD8α hinge, CD8α transmembrane, and CD28 costimulatory domains boosted CAR-T cells to rapidly kill tumors, maintain high expansion capacity, and long-term efficacy in various colorectal cancer models. The durable antitumor function was attributed to the optimal CAR tonic signaling that conferred CAR-T cells with autonomous activation, proliferation, survival and cytokine release in the absence of antigen stimulation. The tonic signaling was associated with the length and the cysteine residues in the CD8α hinge and transmembrane domains. CONCLUSIONS: This study demonstrated a potent GUCY2C-targeted CAR-T cell for gastrointestinal tumor therapy and highlights the importance of adequate tonic signaling for effective CAR-T cell therapy against solid tumors.
Assuntos
Imunoterapia Adotiva , Receptores de Antígenos Quiméricos , Receptores de Enterotoxina , Animais , Camundongos , Humanos , Imunoterapia Adotiva/métodos , Receptores de Enterotoxina/metabolismo , Receptores de Antígenos Quiméricos/metabolismo , Receptores de Antígenos Quiméricos/imunologia , Linhagem Celular Tumoral , Receptores Acoplados a Guanilato Ciclase/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto , Linfócitos T/imunologia , Linfócitos T/metabolismo , Feminino , Antígenos de Neoplasias/imunologia , Antígenos de Neoplasias/metabolismoRESUMO
BACKGROUND: Chimeric antigen receptor (CAR)-T cell has revolutionary efficacy against relapsed/refractory multiple myeloma (R/R MM). However, current CAR-T cell therapy has several limitations including long vein-to-vein time and limited viability. METHODS: A 4-1BB-costimulated B-cell maturation antigen (BCMA) CAR-T integrating an independently-expressed OX40 (BCMA-BBZ-OX40) was designed and generated by a traditional manufacturing process (TraditionCART) or instant manufacturing platform (named InstanCART). The tumor-killing efficiency, differentiation, exhaustion, and expansion level were investigated in vitro and in tumor-bearing mice. An investigator-initiated clinical trial was performed in patients with R/R MM to evaluate the outcomes of both TraditionCART and InstanCART. The primary objective was safety within 1 month after CAR-T cell infusion. The secondary objective was the best overall response rate. RESULTS: Preclinical studies revealed that integrated OX40 conferred BCMA CAR-T cells with superior cytotoxicity and reduced exhaustion levels. InstanCART process further enhanced the proliferation and T-cell stemness of BCMA-BBZ-OX40 CAR-T cells. BCMA-BBZ-OX40 CAR-T cells were successfully administered in 22 patients with R/R MM, including 15 patients with TraditionCART and 7 patients with InstanCART. Up to 50% (11/22) patients had a high-risk cytogenetic profile and 36% (8/22) had extramedullary disease. CAR-T therapy caused grade 1-2 cytokine release syndrome in 19/22 (80%) patients, grade 1 neurotoxicity in 2/22 (9%) patients and led to ≥grade 3 adverse events including neutropenia (20/22, 91%), thrombocytopenia (15/22, 68%), anemia (12/22, 55%), creatinine increased (1/22, 5%), hepatic enzymes increased (5/22, 23%), and sepsis (1/22, 5%). The best overall response rate was 100%, and 64% (14/22) of the patients had a complete response or better. The median manufacturing time was shorter for InstanCART therapy (3 days) than for TraditionCART therapy (10 days). Expansion and duration were dramatically higher for InstanCART cells than for TraditionCART cells. CONCLUSIONS: BCMA-BBZ-OX40 CAR-T cells were well tolerated and exhibited potent responses in patients with R/R MM. InstanCART shortened the manufacturing period compared to TraditionCART, and improved the cellular kinetics. Our results demonstrated the potency and feasibility of OX40-modified BCMA CAR-T cells using InstanCART technology for R/R MM therapy. TRIAL REGISTRATION NUMBER: This trial was registered at www. CLINICALTRIALS: gov as #NCT04537442.
Assuntos
Antígeno de Maturação de Linfócitos B , Imunoterapia Adotiva , Mieloma Múltiplo , Receptores de Antígenos Quiméricos , Humanos , Mieloma Múltiplo/terapia , Mieloma Múltiplo/imunologia , Antígeno de Maturação de Linfócitos B/imunologia , Imunoterapia Adotiva/métodos , Imunoterapia Adotiva/efeitos adversos , Masculino , Animais , Camundongos , Feminino , Pessoa de Meia-Idade , Receptores de Antígenos Quiméricos/imunologia , Receptores de Antígenos Quiméricos/metabolismo , Idoso , Adulto , Receptores OX40/metabolismoRESUMO
PURPOSE: The sacral alar-iliac screw (SAIS) fixation technique has evolved from spinopelvic fixation which originated from S2AIS to sacroiliac joint fixation, with more reports regarding its application of S2AIS than S1AIS. However, there is a lack of comparative evidence to determine which technique is superior for sacroiliac joint fixation. This study aimed to determine which of the screws was superior in terms of implantation safety and biomechanical stability for sacroiliac joint fixation. METHODS: CT data of 80 normal pelvises were analyzed to measure the insertable range, trajectory lengths and widths of both S1AIS and S2AIS on 3D reconstruction models. Φ 6.5 mm and 8.0 mm screws were implanted on the left and right sides of fifty 3D printed pelvic models respectively to observe for breach of screw implantation. Ten synthetic pelvis models were used to simulate type C Tile injuries, and divided into 2 groups with an anterior plate and posterior fixation using one S1AIS or S2AIS on each side. The stiffness and maximum load of the plated and fixated models were measured under vertical loading. RESULTS: The trajectory lengths and widths of the S1AIS and S2AIS were similar (p > 0.05) and there was no breach for Φ 6.5 mm SAIS. However, both the insertable range and trajectory length on the sacral side of S2AIS (234.56 ± 10.06 mm2, 40.97 ± 2.81 mm) were significantly less, and the breach rate of the posterior lateral cortex of the Φ 8.0 mm S2AIS (46%) was significantly higher than the S1AIS (307.55 ± 10.42 mm2, 42.16 ± 3.06 mm, and 2%, p < 0.05). The stiffness and maximum load of S2AIS were less than S1AIS but the difference was not statistically significant (p > 0.05). CONCLUSION: S1AIS and S2AIS have similar screw trajectories and stability. However, S1AIS has a larger insertable range, less breach of the posterior lateral sacral cortex and longer trajectory length on the sacral side than S2AIS, which indicates S1AIS has higher implantation safety and a trend of better mechanical performance over S2AIS for sacroiliac joint fixation. Furthermore, S2AIS with an excessively large diameter should be used with caution for sacroiliac joint fixation.
Assuntos
Parafusos Ósseos , Articulação Sacroilíaca , Articulação Sacroilíaca/cirurgia , Articulação Sacroilíaca/diagnóstico por imagem , Humanos , Masculino , Feminino , Adulto , Sacro/cirurgia , Sacro/diagnóstico por imagem , Fenômenos Biomecânicos , Fusão Vertebral/métodos , Fusão Vertebral/instrumentação , Pessoa de Meia-IdadeRESUMO
BACKGROUND: Electromagnetic radiation is relevant to human life, and radiation can trigger neurodegenerative diseases by altering the function of the central nervous system through oxidative stress, mitochondrial dysfunction, and protein degradation. Astragaloside IV (AS-IV) is anti-oxidative, anti-apoptotic, activates the BDNF-TrkB pathway and enhances synaptic plasticity in radiated mice, which can exert its neuroprotection. However, the exact molecular mechanisms are still unclear. PURPOSE: This study investigated whether AS-IV could play a neuroprotective role by regulating BDNF-TrkB pathway in radiation damage and its underlying molecular mechanisms. METHODS: Transgenic mice (Thy1-YFP line H) were injected with AS-IV (40 mg/kg/day body weight) by intraperitoneal injection daily for 4 weeks, followed by X-rays. PC12 cells and primary cortical neurons were also exposed to UVA after 24 h of AS-IV treatment (25 µg/ml and 50 µg/ml) in vitro. The impact of radiation on learning and cognitive functions was visualized in the Morris water maze assay. Subsequently, Immunofluorescence and Golgi-Cox staining analyses were utilized to investigate the structural damage of neuronal dendrites and the density of dendritic spines. Transmission electron microscopy was performed to examine how the radiation affected the ultrastructure of neurons. Finally, western blotting analysis and Quantitative RT-PCR were used to evaluate the expression levels and locations of proteins in vitro and in vivo. RESULTS: Radiation induced BDNF-TrkB signaling dysregulation and decreased the levels of neuron-related functional genes (Ngf, Bdnf, Gap-43, Ras, Psd-95, Arc, Creb, c-Fos), PSD-95 and F-actin, which subsequently led to damage of neuronal ultrastructure and dendrites, loss of dendritic spines, and decreased dendritic complexity index, contributing to spatial learning and memory deficits. These abnormalities were prevented by AS-IV treatment. In addition, TrkB receptor antagonists antagonized these neuroprotective actions of AS-IV. 7,8-dihydroxyflavone and AS-IV had neuroprotective effects after radiation. CONCLUSION: AS-IV inhibits morphological damage of neurons and cognitive dysfunction in mice after radiation exposure, resulting in a neuroprotective effect, which were mediated by activating the BDNF-TrkB pathway.
Assuntos
Fator Neurotrófico Derivado do Encéfalo , Camundongos Transgênicos , Neurônios , Fármacos Neuroprotetores , Receptor trkB , Saponinas , Transdução de Sinais , Triterpenos , Animais , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Saponinas/farmacologia , Transdução de Sinais/efeitos dos fármacos , Triterpenos/farmacologia , Camundongos , Receptor trkB/metabolismo , Fármacos Neuroprotetores/farmacologia , Neurônios/efeitos dos fármacos , Neurônios/efeitos da radiação , Ratos , Células PC12 , Masculino , Aprendizagem em Labirinto/efeitos dos fármacos , Aprendizagem em Labirinto/efeitos da radiaçãoRESUMO
Geothermal energy is increasingly employed across diverse applications, with bridge deck snow melting emerging as a notable utilization scenario. In Jinan city, China, a project is underway to utilize ground source heat pumps (GSHPS) for heating bridges. However, essential operational parameters, including fluid medium, temperature, and heat exchange details, are currently lacking. This study addresses the thermal design challenges associated with ground heat exchangers (GHE) for bridge heating through a combination of numerical modeling and field experiments. Utilizing software Fluent, a refined three-dimensional multi-condition heat transfer numerical analysis was carried out. Field tests based on actual operating conditions were also conducted and the design parameters were verified. The results indicate that an inlet temperature of 5°C and an aqueous solution of ethylene glycol with a mass concentration of 35% as the heat exchange medium are suitable for the GSHPS in Jinan; Moreover, the influence of backfill material and operation time on the heat transfer efficiency was revealed and the suitable material with 10% bentonite and 90% SiO2 was suggested; Finally, based on the influence of the pipe spacing on the heating characteristics of bridge deck, the transition spacing of 0.2 m is given for the temperature response of the bridge deck. This comprehensive study contributes valuable insights through simulation and experimental analysis of the thermal environment variation, aiming to advance the development of GSHPS for bridge deck heating in Jinan, China.
Assuntos
Calefação , Temperatura Alta , China , Modelos Teóricos , Energia GeotérmicaRESUMO
Dysfunction of the basal forebrain is the main pathological feature in patients with Alzheimer's disease (AD). The aim of this study was to explore whether depressive symptoms cause changes in the functional network of the basal forebrain in AD patients. We collected MRI data from depressed AD patients (n = 24), nondepressed AD patients (n = 14) and healthy controls (n = 20). Resting-state functional magnetic resonance imaging data and functional connectivity analysis were used to study the characteristics of the basal forebrain functional network of the three groups of participants. The functional connectivity differences among the three groups were compared using ANCOVA and post hoc analyses. Compared to healthy controls, depressed AD patients showed reduced functional connectivity between the right nucleus basalis of Meynert and the left supramarginal gyrus and the supplementary motor area. These results increase our understanding of the neural mechanism of depressive symptoms in AD patients.
Assuntos
Doença de Alzheimer , Núcleo Basal de Meynert , Depressão , Imageamento por Ressonância Magnética , Humanos , Doença de Alzheimer/fisiopatologia , Doença de Alzheimer/diagnóstico por imagem , Doença de Alzheimer/complicações , Feminino , Masculino , Idoso , Núcleo Basal de Meynert/diagnóstico por imagem , Núcleo Basal de Meynert/fisiopatologia , Núcleo Basal de Meynert/patologia , Depressão/fisiopatologia , Depressão/diagnóstico por imagem , Pessoa de Meia-Idade , Vias Neurais/fisiopatologia , Vias Neurais/diagnóstico por imagem , Mapeamento Encefálico , Idoso de 80 Anos ou mais , Rede Nervosa/diagnóstico por imagem , Rede Nervosa/fisiopatologiaRESUMO
Background: Irradiation (IR) promotes inflammation and apoptosis by inducing oxidative stress and/or mitochondrial dysfunction (MD). The kidneys are rich in mitochondria, and mitophagy maintains normal renal function by eliminating damaged mitochondria and minimizing oxidative stress. However, whether astragaloside IV (AS-IV) can play a protective role through the mitophagy pathway is not known. Methods: We constructed a radiation injury model using hematoxylin and eosin (HE) staining, blood biochemical analysis, immunohistochemistry, TdT-mediated dUTP nick end labeling (TUNEL) staining, ultrastructural observation, and Western blot analysis to elucidate the AS-IV resistance mechanism for IR-induced renal injury. Results: IR induced mitochondrial damage; the increase of creatinine (SCr), blood urea nitrogen (BUN) and uric acid (UA); and the activation of NOD-like receptor thermal protein domain-associated protein 3 (NLRP3) inflammasome and apoptosis in renal tissue. AS-IV administration attenuated the IR-induced MD and reactive oxygen species (ROS) levels in the kidney; enhanced the levels of mitophagy-associated protein [PTEN-induced putative kinase 1 (PINK1)], parkin proteins, and microtubule-associated protein 1 light 3 (LC3) II/I ratio in renal tissues; diminished NLRP3 inflammasome activation-mediated proteins [cleaved cysteinyl aspartate-specific proteinase-1 (caspase-1), interleukin-1ß (IL-1ß)] and apoptosis-related proteins [cleaved caspase-9, cleaved caspase-3, BCL2-associated X (Bax)]; reduced SCr, BUN, and UA levels; and attenuated the histopathological alterations in renal tissue. Conversely, mitophagy inhibitor cyclosporin A (CsA) suppressed the AS-IV-mediated protection of renal tissue. Conclusions: AS-IV can strongly diminish the activation and apoptosis of NLRP3 inflammasome, thus attenuating the renal injury induced by radiation by promoting the PINK1/parkin-mediated mitophagy. These findings suggest that AS-IV is a promising drug for treating IR-induced kidney injury.
RESUMO
Background It has been reported in the literature that the complication rate of percutaneous compression plate (PCCP) is the lowest among the new internal fixators for the treatment of femoral neck fracture (FNS). However, no multicenter studies of PCCP for FNS have been reported. This study aimed to evaluate the med-term effectiveness of PCCP in a multicenter mainly through radiology. Methods 265 patients with FNF treated with PCCP fixation in our five hospitals between January 2011 and December 2020 were retrospectively analyzed. 140 men and 125 women; aged 19-79 (mean 51.6ï¼years. The follow-up time was 2-5 years (mean 3.1). Radiological evaluation of the therapeutic effect was the main outcome, and the function was the secondary outcome. Results One case of screw cutting out, 3 cases of screw back out, 25 cases of neck shortening, 2 cases of nonunion, 8 cases of delayed healing, and 29 cases of avascular necrosis (AVN). Bivariate correlation showed that shortening healing was correlated with age, Singh index, and Garden alignment index, poor healing was correlated with garden alignment index, and AVN was correlated with Pauwels and Garden classifications and operation timing. Further pairwise comparison analysis showed that age of > 65 and Singh index IV were dangerous factors for neck shortening, and the operation timing > 3 days, Pauwels II and III, and Garden III and IV were dangerous factors for AVN. The excellent and good rate of function in 198 patients who were readmitted for internal fixator removal or other surgery was 90.9%. Conclusion PCCP for FNS has satisfactory med-term efficacy with a low complication rate. The main complication is AVN, which is prone to occur in patients with displaced Pauwels II or III FNF and operation timing > 3 days. Another main complication is shortening healing, which is prone to occur in patients with an age of > 65 and Singh index IV.
RESUMO
BACKGROUND: Masquelet's induced membrane (IM) has osteogenesis activity, but IM spontaneous osteogenesis (SO) has not been described previously. OBJECTIVES: To report on varying degrees of IMSO and analyze its possible causes. METHODS: Twelve eight-week-old male Sprague-Dawley rats with 10 mm right femoral bone defects who received the first stage of IM technique (IMT) were used to observe the SO. In addition, clinical data from patients with bone defects who received the first stage of IMT with an interval of > 2 months post-operatively and exhibited SO between January 2012 and June 2020 were retrospectively analyzed. The SO was divided into four grades according to the amount and characteristics of the new bone formation. RESULTS: At twelve weeks, grade II SO was observed in all rats, and more new bone was formed in the IM near the bone end forming an uneven margin. Histology revealed bone and cartilage foci in the new bone. Four of the 98 patients treated with the first stage of IMT exhibited IMSO, including one female and three males with a median age of 40.5 years (range 29-52 years). The bone defects were caused by severe fractures and infection in two cases and by infection or tumor in one case each. Partial or segmental defects occurred in two cases. The time interval between inserting a cement spacer and diagnosis of SO ranged from six months to nine years. Two cases were grade I, and one case each of grades III and IV. CONCLUSION: Varying degrees of SO confirm the existence of the IMSO phenomenon. Bioactive bone tissue or local inflammation and a long time interval are the primary reasons underlying enhancement of the osteogenic activity of IM and leading to SO, which tends to take place as endochondral osteogenesis.
Assuntos
Fraturas Ósseas , Osteogênese , Ratos , Masculino , Feminino , Animais , Ratos Sprague-Dawley , Estudos Retrospectivos , Fêmur/diagnóstico por imagem , Fêmur/cirurgiaRESUMO
Radiation can induce nerve cell damage. Synapse connectivity and functionality are thought to be the essential foundation of all cognitive functions. Therefore, treating and preventing damage to synaptic structure and function is an urgent challenge. Astragaloside IV (AS-IV) is a glycoside extracted from Astragalus membranaceus (Fisch.). Bunge is a widely used traditional Chinese medicine in China with various pharmacological properties, including protective effects on the central nervous system (CNS). In this study, the effect of AS-IV on synapse damage and BDNF/TrkB signaling pathway in radiated C57BL/6 mice with X-rays was investigated. PC12 cells and primary cortical neurons were exposed to UVA in vitro. Open field test and rotarod test were used to observe the effects of AS-IV on the motor and explore the abilities of radiated mice. The pathological changes in the brain were observed by hematoxylin and eosin and Nissl staining. Immunofluorescence analysis was used to detect the synapse damage. The expressions of the BDNF/TrkB pathway and neuroprotection-related molecules were detected by Western blotting and Quantitative-RTPCR, respectively. The results showed that AS-IV could improve the motor and explore abilities of radiated mice, reduce pathological damage to the cortex, enhance neuroprotection functions, and activate BDNF/TrkB pathway. In conclusion, AS-IV could relieve radiation-induced synapse damage, at least partly through the BDNF/TrkB pathway.
Assuntos
Fator Neurotrófico Derivado do Encéfalo , Transdução de Sinais , Ratos , Camundongos , Animais , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Camundongos Endogâmicos C57BL , NeurôniosRESUMO
Electrocatalytic water splitting suffers from sluggish kinetics towards the hydrogen evolution reaction (HER). Balancing the adsorption/desorption ability towards H* and OH* is considered to be an efficient way to enhance the HER efficiency, but it is too hard at one activity site. In this work, the HER activity of the single 3d transition metal atom-anchored BC2N monolayer (M@BC2N, M = Fe, Co, and Ni) was investigated by a density functional theory approach. Our calculation suggests that an efficient dual-active site is formed on M@BC2N towards the HER, i.e., the metal center M as the OH* active site and its adjacent C atoms as the H* active site. The combination of single M atoms with the BC2N monolayer can effectively tune the electronic structure of dual active sites to optimize the adsorption of H* and OH*, resulting in a HER activity sequence of Fe@BC2N < Co@BC2N < Ni@BC2N. Notably, the HER exchange current density of Ni@BC2N reaches up to 0.53 mA cm-2, which is close to the value for commercial Pt/C, suggesting its huge potential in the HER.
RESUMO
The key to reducing the mortality of gastric cancer is early detection, early diagnosis, and early treatment of gastric cancer. Early diagnosis of gastric cancer is the key to early detection and diagnosis of gastric cancer. Early diagnosis and treatment of gastric cancer is of great significance for improving the curative effect and reducing mortality of gastric cancer. The purpose of this paper is to study the diagnosis of early gastric cancer based on medical imaging techniques and mathematical modeling. The effect of W-DeepLab network-assisted diagnosis of images under white light was analyzed, and the value of Narrow Band Imaging and Blue Laser Imaging in the diagnosis of early gastric cancer was compared. Because Blue Laser Imaging endoscopy can clearly observe the demarcation line and microvascular morphology; but when using Narrow Band Imaging observation, part of the demarcation line and microvascular morphology is not observed. The results show that Blue Laser Imaging is brighter than Narrow Band Imaging's endoscopic images, and it is easier to observe the microstructure of lesions under endoscopy, so as to accurately determine the nature of lesions.
Assuntos
Neoplasias Gástricas , Detecção Precoce de Câncer/métodos , Gastroscopia/métodos , Humanos , Imagem de Banda Estreita/métodos , Neoplasias Gástricas/diagnóstico , TecnologiaRESUMO
Background: Multiple myeloma (MM) is the second most common hematological malignancy that still lacks effective clinical treatments. In particular, MM with central nervous system (CNS) invasion occurs rarely. Although B-cell maturation antigen (BCMA)-targeted chimeric antigen receptor-T (CAR-T) cell therapy has shown great promise for the treatment of relapsed/refractory MM, few studies have reported whether BCMA CAR-T could inhibit MM with CNS invasion. Case Presentation: In this study, we report a special case of a 63-year-old male patient who suffered MM with CNS invasion and presented rapid extramedullary disease (EMD) progression into multiple organs. Before CAR-T cell infusion, this patient received five cycles of bortezomib, Adriamycin, and dexamethasone (PAD) and an autologous transplant as the front-line treatment, followed by two cycles of bortezomib, lenalidomide, and dexamethasone (VRD) as the second-line regimen, and daratumumab, bortezomib, dexamethasone (DVD) as the third-line regimen. Since the patient still showed rapid progressive disease (PD), BCMA CAR-T cells were infused, and 1 month later, a stringent complete response (sCR) was achieved, and the response lasted for 4 months. Meanwhile, only grade 1 cytokine release syndrome (CRS) was observed. Conclusion: This case report demonstrated that BCMA CAR-T could effectively eradicate CNS-involved MM with low adverse events, suggesting that CAR-T cell therapy could be a feasible therapeutic option for this kind of refractory disease. Clinical Trial Registration: https://ClinicalTrials.gov, identifier: NCT04537442.a.
RESUMO
Innovation and entrepreneurship training through higher education sector is an important way to foster innovative talents and enhance their social adaptation abilities. We reformed and optimized the experimental teaching of human anatomy and animal physiology with the aim to promote the integration of students' theory learning with practice, to promote students' ability to apply anatomical and physiological knowledge to medicine, pharmacy, and life practice. Last but not least, students' innovative consciousness of applying scientific research to serve the society could also be enhanced. These practices would enhance the practical ability of the students through integrating the innovation education and professional education.
Assuntos
Currículo , Estudantes , Animais , HumanosRESUMO
Objective: Previous studies reported that 4-1BB-based CD19 chimeric antigen receptor (CAR)-T cells were more beneficial for the clinical outcomes than CD28-based CAR-T cells, especially the lower incidence rate of severe adverse events. However, the median progression-free survival (mPFS) of 4-1BB-based product Kymriah was shorter than that of CD28-based Yescarta (2.9 monthsvs. 5.9 months), suggesting that Kymriah was limited in the long-term efficacy. Thus, a safe and durable 4-1BB-based CD19 CAR-T needs to be developed. Methods: We designed a CD19-targeted CAR-T (named as IM19) which consisted of an FMC63 scFv, 4-1BB and CD3ζ intracellular domain and was manufactured into a memory T-enriched formulation. A phase I/II clinical trial was launched to evaluate the clinical outcomes of IM19 in relapsed or refractory (r/r) B cell non-Hodgkin lymphoma (B-NHL). Dose-escalation investigation (at a dose of 5×105/kg, 1×106/kg and 3×106/kg) was performed in 22 r/r B-NHL patients. All patients received a single infusion of IM19 after 3-day conditional regimen. Results: At month 3, the overall response rate (ORR) was 59.1%, the complete response rate (CRR) was 50.0%. The mPFS was 6 months and the 1-year overall survival rate was 77.8%. Cytokine release syndrome (CRS) occurred in 13 patients (59.1%), with 54.5% of grade 1-2 CRS. Only one patient (4.5%) experienced grade 3 CRS and grade 3 neurotoxicity. Conclusions: These results demonstrated the safety and durable efficacy of a 4-1BB-based CD19 CAR-T, IM19, which is promising for further development and clinical investigation.
RESUMO
With China already committing to peak carbon dioxide emissions before 2030 and achieving carbon neutrality before 2060, green development is urgent. It is necessary to clarify the driving mechanism of green development to design the path of green development scientifically. From the internal perspective of the green development system, this paper divides the green development power into external power and internal power. The external power is the political pressure formed by the public's green demands. The internal power is the endogenous power of green development transformed by the political promotion willingness of local government leaders. The research shows that (1) the green demands from the public and the accompanying political pressure can form the driving force of green development. (2) The political promotion intention has not been transformed into the endogenous driving force to promote green development in the research period. (3) The external driving force of public appeal is closely related to economic development, income and consumption levels, and education. This paper enriches the research literatures on the driving mechanism of green development and provides theoretical and practical exploration for the driving path of green development.
Assuntos
Governo Local , Desenvolvimento Sustentável , Dióxido de Carbono/análise , China , Desenvolvimento Econômico , RendaRESUMO
Institutions of higher learning undertake the important responsibility of personnel training. Teaching and scientific research are two indispensable functions of colleges and universities, and the relationship between them is unbalanced and low integration in the current education and teaching. According to the existing problems in the experimental course of human anatomy and animal physiology, we explored how to apply the ideological and political education of scientific research to improve students' cognitive ability, develop experimental projects combined with scientific research practice, and strengthen the combination of classroom teaching and scientific research practice, aiming to establish the basic concept of the integration of science and education. These are favorable for the realization of the training goal of high-quality innovative talents.
Assuntos
Currículo , Universidades , Animais , Humanos , EstudantesRESUMO
BACKGROUND: The unprecedented efficacy of chimeric antigen receptor T (CAR-T) cell immunotherapy of CD19+ B-cell malignancies has opened a new and useful way for the treatment of malignant tumors. Nonetheless, there are still formidable challenges in the field of CAR-T cell therapy, such as the biodistribution of CAR-T cells in vivo. METHODS: NALM-6, a human B-cell acute lymphoblastic leukemia (B-ALL) cell line, was used as target cells. CAR-T cells were injected into a mice model with or without target cells. Then we measured the distribution of CAR-T cells in mice. In addition, an exploratory clinical trial was conducted in 13 r/r B-cell non-Hodgkin lymphoma (B-NHL) patients, who received CAR-T cell infusion. The dynamic changes in patient blood parameters over time after infusion were detected by qPCR and flow cytometry. RESULTS: CAR-T cells still proliferated over time after being infused into the mice without target cells within 2 weeks. However, CAR-T cells did not increase significantly in the presence of target cells within 2 weeks after infusion, but expanded at week 6. In the clinical trial, we found that CAR-T cells peaked at 7-21 days after infusion and lasted for 420 days in peripheral blood of patients. Simultaneously, mild side effects were observed, which could be effectively controlled within 2 months in these patients. CONCLUSIONS: CAR-T cells can expand themselves with or without target cells in mice, and persist for a long time in NHL patients without serious side effects. TRIAL REGISTRATION: The registration date of the clinical trial is May 17, 2018 and the trial registration numbers is NCT03528421 .