Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Environ Res ; 257: 119292, 2024 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-38824982

RESUMO

This study developed a novel process named sulfidated zero-valent iron/peroxymonosulfate/visible light irradiation (S-mZVI/PMS/vis) for enhanced organic pollutant degradation. The S-mZVI/PMS/vis process exhibited remarkable catalytic activity, achieving a 99.6% rhodamine B (RhB) removal within 10 min. The degradation rate constant of RhB by the S-mZVI/PMS/vis process was found to be 6.49 and 79.84 times higher than that by the S-mZVI/PMS and PMS/vis processes, respectively. Furthermore, the S-mZVI/PMS/vis process worked efficiently across a wide pH range (3.0-9.0), and the result of five-cycle experiments demonstrated the excellent reusability and stability of S-mZVI. Radical quenching tests and electron paramagnetic resonance analysis indicated that ·O2-, 1O2, and h+ significantly contributed to the degradation of RhB through the S-mZVI/PMS/vis process. The visible light irradiation increased the Fe2+ concentration, improved the Fe3+/Fe2+ cycle, and consequently enhanced the PMS decomposition, reactive species production, and RhB degradation. This work offers a promising strategy to highly efficiently activate PMS for organic pollutants elimination from aqueous solutions.


Assuntos
Ferro , Luz , Peróxidos , Rodaminas , Poluentes Químicos da Água , Ferro/química , Rodaminas/química , Poluentes Químicos da Água/química , Peróxidos/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA