Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Pest Manag Sci ; 80(1): 166-175, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37367835

RESUMO

BACKGROUND: Weeds are among the most damaging pests of agriculture, causing ≈10% worldwide reduction in crop productivity each year. Over-reliance on synthetic chemical herbicides has caused weeds around the world to evolve resistance. Bioherbicides may be an alternative. However, among their many constraints including strict environmental requirements, complicated mass-production and high product costs, limited pathogenicity and a narrow spectrum of activity are frequently encountered and are major barriers to commercialization. RESULTS: We isolated a pathogenic fungus, HXDC-1-2, from diseased leaves of a gramineous weed, stiltgrass [Microstegium vimineum (Trin.) A. Camus], from the edge of farmland in Guizhou province, China. HXDC-1-2 was identified as the fungal species Bipolaris yamadae based on the morphological characteristics and ITS-GPDH-EF1α multiple primer analysis. Its potential as a bioherbicide was evaluated by determining its weed control efficacy and crop safety. The ED50 and ED90 values of HXDC-1-2 on Echinochloa crus-galli were 3.22 × 103 and 1.32 × 105 conidia mL-1 , respectively. Host range tests revealed that 20 gramineous weeds including Setaria viridis, Leptochloa chinensis, Eleusine indica, Pseudosorghum zollingeri, Leptochloa panicea, Bromus catharticus, E. crus-galli plants, were extremely susceptible whereas 77 crop species from 27 plant families including rice, wheat, barley, corn, soybean and cotton (excluding cowpea and sorghum) were unaffected. CONCLUSION: Bipolaris yamadae strain HXDC-1-2 has great potential to be developed as a commercial broad-spectrum bioherbicidal agent for controlling grass weeds in arable crops. © 2023 Society of Chemical Industry.


Assuntos
Herbicidas , Poaceae , Plantas Daninhas , Controle de Plantas Daninhas , Herbicidas/farmacologia , Produtos Agrícolas
2.
Int J Mol Sci ; 24(7)2023 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-37047599

RESUMO

Eleusine indica (goosegrass) is a problematic weed worldwide known for its multi-herbicide tolerance/resistance biotype. However, a genetic transformation method in goosegrass has not been successfully established, making a bottleneck for functional genomics studies in this species. Here, we report a successful Agrobacterium-mediated transformation method for goosegrass. Firstly, we optimized conditions for breaking seed dormancy and increasing seed germination rate. A higher callus induction rate from germinated seeds was obtained in N6 than in MS or B5 medium. Then the optimal transformation efficiency of the gus reporter gene was obtained by infection with Agrobacterium tumefaciens culture of OD600 = 0.5 for 30 min, followed by 3 days of co-cultivation with 300 µmol/L acetosyringone. Concentrations of 20 mg L-1 kanamycin and 100 mg L-1 timentin were used to select the transformed calli. The optimal rate of regeneration of the calli was generated by using 0.50 mg L-1 6-BA and 0.50 mg L-1 KT in the culture medium. Then, using this transformation method, we overexpressed the paraquat-resistant EiKCS gene into a paraquat-susceptible goosegrass biotype MZ04 and confirmed the stable inheritance of paraquat-resistance in the transgenic goosegrass lines. This approach may provide a potential mechanism for the evolution of paraquat-resistant goosegrass and a promising gene for the manipulation of paraquat-resistance plants. This study is novel and valuable in future research using similar methods for herbicide resistance.


Assuntos
Eleusine , Paraquat , Paraquat/farmacologia , Eleusine/genética , Agrobacterium tumefaciens/genética , Resistência a Herbicidas/genética , Transformação Genética , Plantas Geneticamente Modificadas/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA