RESUMO
DNA i-motif structures are formed in the nuclei of human cells and are believed to provide critical genomic regulation. While the existence, abundance, and distribution of i-motif structures in human cells has been demonstrated and studied by immunofluorescent staining, and more recently NMR and CUT&Tag, the abundance and distribution of such structures in human genomic DNA have remained unclear. Here we utilise high-affinity i-motif immunoprecipitation followed by sequencing to map i-motifs in the purified genomic DNA of human MCF7, U2OS and HEK293T cells. Validated by biolayer interferometry and circular dichroism spectroscopy, our approach aimed to identify DNA sequences capable of i-motif formation on a genome-wide scale, revealing that such sequences are widely distributed throughout the human genome and are common in genes upregulated in G0/G1 cell cycle phases. Our findings provide experimental evidence for the widespread formation of i-motif structures in human genomic DNA and a foundational resource for future studies of their genomic, structural, and molecular roles.
Assuntos
DNA , Genoma Humano , Motivos de Nucleotídeos , Humanos , DNA/genética , DNA/química , DNA/metabolismo , Células HEK293 , Conformação de Ácido Nucleico , Células MCF-7RESUMO
MOTIVATION: Methods for concept recognition (CR) in clinical texts have largely been tested on abstracts or articles from the medical literature. However, texts from electronic health records (EHRs) frequently contain spelling errors, abbreviations, and other nonstandard ways of representing clinical concepts. RESULTS: Here, we present a method inspired by the BLAST algorithm for biosequence alignment that screens texts for potential matches on the basis of matching k-mer counts and scores candidates based on conformance to typical patterns of spelling errors derived from 2.9 million clinical notes. Our method, the Term-BLAST-like alignment tool (TBLAT) leverages a gold standard corpus for typographical errors to implement a sequence alignment-inspired method for efficient entity linkage. We present a comprehensive experimental comparison of TBLAT with five widely used tools. Experimental results show an increase of 10% in recall on scientific publications and 20% increase in recall on EHR records (when compared against the next best method), hence supporting a significant enhancement of the entity linking task. The method can be used stand-alone or as a complement to existing approaches. AVAILABILITY AND IMPLEMENTATION: Fenominal is a Java library that implements TBLAT for named CR of Human Phenotype Ontology terms and is available at https://github.com/monarch-initiative/fenominal under the GNU General Public License v3.0.
Assuntos
Algoritmos , Idioma , Humanos , Alinhamento de Sequência , Registros Eletrônicos de Saúde , PublicaçõesRESUMO
Intercalated motifs or i-Motifs (iMs) are nucleic acid structures formed by cytosine-rich sequences, which may regulate cellular processes and have broad applications in nanotechnology due to their pH-dependent nature. We have developed an iM-specific nanobody (iMbody) that can recognize iM DNA structures regardless of their sequences, making it a versatile research tool for studying iMs in various contexts. Here, we provide a protocol for the bacterial expression and His-tag purification of iMbody. We then describe procedures for performing ELISA and immunostaining using iMbody.
Assuntos
DNA , Nanotecnologia , Motivos de Nucleotídeos , Nanotecnologia/métodos , DNA/metabolismoRESUMO
Methylation of cytosines in the CG context (mCG) is the most abundant DNA modification in vertebrates that plays crucial roles in cellular differentiation and identity. After fertilization, DNA methylation patterns inherited from parental gametes are remodelled into a state compatible with embryogenesis. In mammals, this is achieved through the global erasure and re-establishment of DNA methylation patterns. However, in non-mammalian vertebrates like zebrafish, no global erasure has been observed. To investigate the evolutionary conservation and divergence of DNA methylation remodelling in teleosts, we generated base resolution DNA methylome datasets of developing medaka and medaka-zebrafish hybrid embryos. In contrast to previous reports, we show that medaka display comparable DNA methylome dynamics to zebrafish with high gametic mCG levels (sperm: â¼90%; egg: â¼75%), and adoption of a paternal-like methylome during early embryogenesis, with no signs of prior DNA methylation erasure. We also demonstrate that non-canonical DNA methylation (mCH) reprogramming at TGCT tandem repeats is a conserved feature of teleost embryogenesis. Lastly, we find remarkable evolutionary conservation of DNA methylation remodelling patterns in medaka-zebrafish hybrids, indicative of compatible DNA methylation maintenance machinery in far-related teleost species. Overall, these results suggest strong evolutionary conservation of DNA methylation remodelling pathways in teleosts, which is distinct from the global DNA methylome erasure and reestablishment observed in mammals.
RESUMO
Predicting the impact of coding and noncoding variants on splicing is challenging, particularly in non-canonical splice sites, leading to missed diagnoses in patients. Existing splice prediction tools are complementary but knowing which to use for each splicing context remains difficult. Here, we describe Introme, which uses machine learning to integrate predictions from several splice detection tools, additional splicing rules, and gene architecture features to comprehensively evaluate the likelihood of a variant impacting splicing. Through extensive benchmarking across 21,000 splice-altering variants, Introme outperformed all tools (auPRC: 0.98) for the detection of clinically significant splice variants. Introme is available at https://github.com/CCICB/introme .
Assuntos
Sítios de Splice de RNA , Splicing de RNA , Humanos , Íntrons , Aprendizado de Máquina , MutaçãoRESUMO
Australian Genomics is a national collaborative partnership of more than 100 organizations piloting a whole-of-system approach to integrating genomics into healthcare, based on federation principles. In the first five years of operation, Australian Genomics has evaluated the outcomes of genomic testing in more than 5,200 individuals across 19 rare disease and cancer flagship studies. Comprehensive analyses of the health economic, policy, ethical, legal, implementation and workforce implications of incorporating genomics in the Australian context have informed evidence-based change in policy and practice, resulting in national government funding and equity of access for a range of genomic tests. Simultaneously, Australian Genomics has built national skills, infrastructure, policy, and data resources to enable effective data sharing to drive discovery research and support improvements in clinical genomic delivery.
Assuntos
Genômica , Política de Saúde , Humanos , Austrália , Doenças Raras , Atenção à SaúdeRESUMO
Genes specifying long non-coding RNAs (lncRNAs) occupy a large fraction of the genomes of complex organisms. The term 'lncRNAs' encompasses RNA polymerase I (Pol I), Pol II and Pol III transcribed RNAs, and RNAs from processed introns. The various functions of lncRNAs and their many isoforms and interleaved relationships with other genes make lncRNA classification and annotation difficult. Most lncRNAs evolve more rapidly than protein-coding sequences, are cell type specific and regulate many aspects of cell differentiation and development and other physiological processes. Many lncRNAs associate with chromatin-modifying complexes, are transcribed from enhancers and nucleate phase separation of nuclear condensates and domains, indicating an intimate link between lncRNA expression and the spatial control of gene expression during development. lncRNAs also have important roles in the cytoplasm and beyond, including in the regulation of translation, metabolism and signalling. lncRNAs often have a modular structure and are rich in repeats, which are increasingly being shown to be relevant to their function. In this Consensus Statement, we address the definition and nomenclature of lncRNAs and their conservation, expression, phenotypic visibility, structure and functions. We also discuss research challenges and provide recommendations to advance the understanding of the roles of lncRNAs in development, cell biology and disease.
Assuntos
RNA Longo não Codificante , RNA Longo não Codificante/genética , Núcleo Celular/genética , Cromatina/genética , Sequências Reguladoras de Ácido Nucleico , RNA Polimerase II/genéticaRESUMO
Sharing genomic variant interpretations across laboratories promotes consistency in variant assertions. A landscape analysis of Australian clinical genetic-testing laboratories in 2017 identified that, despite the national-accreditation-body recommendations encouraging laboratories to submit genotypic data to clinical databases, fewer than 300 variants had been shared to the ClinVar public database. Consultations with Australian laboratories identified resource constraints limiting routine application of manual processes, consent issues, and differences in interpretation systems as barriers to sharing. This information was used to define key needs and solutions required to enable national sharing of variant interpretations. The Shariant platform, using both the GRCh37 and GRCh38 genome builds, was developed to enable ongoing sharing of variant interpretations and associated evidence between Australian clinical genetic-testing laboratories. Where possible, two-way automated sharing was implemented so that disruption to laboratory workflows would be minimized. Terms of use were developed through consultation and currently restrict access to Australian clinical genetic-testing laboratories. Shariant was designed to store and compare structured evidence, to promote and record resolution of inter-laboratory classification discrepancies, and to streamline the submission of variant assertions to ClinVar. As of December 2021, more than 14,000 largely prospectively curated variant records from 11 participating laboratories have been shared. Discrepant classifications have been identified for 11% (28/260) of variants submitted by more than one laboratory. We have demonstrated that co-design with clinical laboratories is vital to developing and implementing a national variant-interpretation sharing effort. This approach has improved inter-laboratory concordance and enabled opportunities to standardize interpretation practices.
Assuntos
Bases de Dados Genéticas , Laboratórios , Humanos , Variação Genética , Austrália , Testes GenéticosRESUMO
The notion that mobile units of nucleic acid known as transposable elements can operate as genomic controlling elements was put forward over six decades ago1,2. However, it was not until the advancement of genomic sequencing technologies that the abundance and repertoire of transposable elements were revealed, and they are now known to constitute up to two-thirds of mammalian genomes3,4. The presence of DNA regulatory regions including promoters, enhancers and transcription-factor-binding sites within transposable elements5-8 has led to the hypothesis that transposable elements have been co-opted to regulate mammalian gene expression and cell phenotype8-14. Mammalian transposable elements include recent acquisitions and ancient transposable elements that have been maintained in the genome over evolutionary time. The presence of ancient conserved transposable elements correlates positively with the likelihood of a regulatory function, but functional validation remains an essential step to identify transposable element insertions that have a positive effect on fitness. Here we show that CRISPR-Cas9-mediated deletion of a transposable element-namely the LINE-1 retrotransposon Lx9c11-in mice results in an exaggerated and lethal immune response to virus infection. Lx9c11 is critical for the neogenesis of a non-coding RNA (Lx9c11-RegoS) that regulates genes of the Schlafen family, reduces the hyperinflammatory phenotype and rescues lethality in virus-infected Lx9c11-/- mice. These findings provide evidence that a transposable element can control the immune system to favour host survival during virus infection.
Assuntos
Elementos de DNA Transponíveis , Interações entre Hospedeiro e Microrganismos , Imunidade , Retroelementos , Viroses , Animais , Sistemas CRISPR-Cas/genética , Elementos de DNA Transponíveis/genética , Elementos de DNA Transponíveis/imunologia , Evolução Molecular , Interações entre Hospedeiro e Microrganismos/genética , Interações entre Hospedeiro e Microrganismos/imunologia , Imunidade/genética , Camundongos , RNA não Traduzido/genética , Sequências Reguladoras de Ácido Nucleico/genética , Retroelementos/genética , Retroelementos/imunologia , Viroses/genética , Viroses/imunologiaRESUMO
Whole genome sequencing (WGS) improves Mendelian disorder diagnosis over whole exome sequencing (WES); however, additional diagnostic yields and costs remain undefined. We investigated differences between diagnostic and cost outcomes of WGS and WES in a cohort with suspected Mendelian disorders. WGS was performed in 38 WES-negative families derived from a 64 family Mendelian cohort that previously underwent WES. For new WGS diagnoses, contemporary WES reanalysis determined whether variants were diagnosable by original WES or unique to WGS. Diagnostic rates were estimated for WES and WGS to simulate outcomes if both had been applied to the 64 families. Diagnostic costs were calculated for various genomic testing scenarios. WGS diagnosed 34% (13/38) of WES-negative families. However, contemporary WES reanalysis on average 2 years later would have diagnosed 18% (7/38 families) resulting in a WGS-specific diagnostic yield of 19% (6/31 remaining families). In WES-negative families, the incremental cost per additional diagnosis using WGS following WES reanalysis was AU$36,710 (£19,407;US$23,727) and WGS alone was AU$41,916 (£22,159;US$27,093) compared to WES-reanalysis. When we simulated the use of WGS alone as an initial genomic test, the incremental cost for each additional diagnosis was AU$29,708 (£15,705;US$19,201) whereas contemporary WES followed by WGS was AU$36,710 (£19,407;US$23,727) compared to contemporary WES. Our findings confirm that WGS is the optimal genomic test choice for maximal diagnosis in Mendelian disorders. However, accepting a small reduction in diagnostic yield, WES with subsequent reanalysis confers the lowest costs. Whether WES or WGS is utilised will depend on clinical scenario and local resourcing and availability.
Assuntos
Exoma , Sequência de Bases , Mapeamento Cromossômico , Humanos , Sequenciamento do Exoma , Sequenciamento Completo do GenomaRESUMO
BACKGROUND AND OBJECTIVES: Mitochondrial diseases (MDs) are the commonest group of heritable metabolic disorders. Phenotypic diversity can make molecular diagnosis challenging, and causative genetic variants may reside in either mitochondrial or nuclear DNA. A single comprehensive genetic diagnostic test would be highly useful and transform the field. We applied whole-genome sequencing (WGS) to evaluate the variant detection rate and diagnostic capacity of this technology with a view to simplifying and improving the MD diagnostic pathway. METHODS: Adult patients presenting to a specialist MD clinic in Sydney, Australia, were recruited to the study if they satisfied clinical MD (Nijmegen) criteria. WGS was performed on blood DNA, followed by clinical genetic analysis for known pathogenic MD-associated variants and MD mimics. RESULTS: Of the 242 consecutive patients recruited, 62 participants had "definite," 108 had "probable," and 72 had "possible" MD classification by the Nijmegen criteria. Disease-causing variants were identified for 130 participants, regardless of the location of the causative genetic variants, giving an overall diagnostic rate of 53.7% (130 of 242). Identification of causative genetic variants informed precise treatment, restored reproductive confidence, and optimized clinical management of MD. DISCUSSION: Comprehensive bigenomic sequencing accurately detects causative genetic variants in affected MD patients, simplifying diagnosis, enabling early treatment, and informing the risk of genetic transmission.
Assuntos
Doenças Mitocondriais , Adulto , Austrália , Testes Genéticos , Humanos , Mitocôndrias , Doenças Mitocondriais/diagnóstico , Doenças Mitocondriais/genética , Sequenciamento Completo do GenomaRESUMO
G-quadruplexes are secondary helical configurations established between guanine-rich nucleic acids. The structure is seen in the promoter regions of numerous genes under certain situations. Predicted G-quadruplex-forming sequences are distributed across the genome in a non-random way. These structures are formed in telomeric regions of the human genome and oncogenic promoter G-rich regions. Identification of mechanisms of regulation of stability of G-quadruplexes has practical significance for understanding the molecular basis of genetic diseases such as cancer. A number of non-coding RNAs such as H19, XIST, FLJ39051 (GSEC), BC200 (BCYRN1), TERRA, pre-miRNA-1229, pre-miRNA-149 and miR-1587 have been found to contain G-quadraplex-forming regions or affect configuration of these structures in target genes. In the current review, we outline the recent research on the interaction between G-quadruplexes and non-coding RNAs, other RNA transcripts and DNA molecules.
RESUMO
The inherited retinal dystrophies (IRDs) are a clinically and genetically complex group of disorders primarily affecting the rod and cone photoreceptors or other retinal neuronal layers, with emerging therapies heralding the need for accurate molecular diagnosis. Targeted capture and panel-based strategies examining the partial or full exome deliver molecular diagnoses in many IRD families tested. However, approximately one in three families remain unsolved and unable to obtain personalised recurrence risk or access to new clinical trials or therapy. In this study, we investigated whole genome sequencing (WGS), focused assays and functional studies to assist with unsolved IRD cases and facilitate integration of these approaches to a broad molecular diagnostic clinical service. The WGS approach identified variants not covered or underinvestigated by targeted capture panel-based clinical testing strategies in six families. This included structural variants, with notable benefit of the WGS approach in repetitive regions demonstrated by a family with a hybrid gene and hemizygous missense variant involving the opsin genes, OPN1LW and OPN1MW. There was also benefit in investigation of the repetitive GC-rich ORF15 region of RPGR. Further molecular investigations were facilitated by focused assays in these regions. Deep intronic variants were identified in IQCB1 and ABCA4, with functional RNA based studies of the IQCB1 variant revealing activation of a cryptic splice acceptor site. While targeted capture panel-based methods are successful in achieving an efficient molecular diagnosis in a proportion of cases, this study highlights the additional benefit and clinical value that may be derived from WGS, focused assays and functional genomics in the highly heterogeneous IRDs.
Assuntos
Distrofias Retinianas , Transportadores de Cassetes de Ligação de ATP/genética , Proteínas de Ligação a Calmodulina/genética , Exoma , Proteínas do Olho/genética , Humanos , Mutação , Linhagem , Sítios de Splice de RNA , Distrofias Retinianas/diagnóstico , Distrofias Retinianas/genética , Sequenciamento do Exoma/métodos , Sequenciamento Completo do GenomaRESUMO
BACKGROUND: HLA genotyping is a prerequisite for selection of suitable donors in the process of bone marrow transplantation. METHODS: In the current study, the frequencies of HLA-A, -B, -C and -DRB1 alleles and A-B-C-DRB1 haplotypes were assessed in 855 healthy Iranian persons using a low-resolution sequence specific primer (SSP) kit. RESULTS: Frequencies were compared between 11 subpopulations including Armani, Balouch, Bandari, Turk, Turkaman, Arab, Fars, Kurd, Gilaki, Lor and Mazani. In total, 17 HLA-A alleles were detected, one of which (HLA-A*74) was present only among Lors. HLA-A*23 and -A*26 were the most frequent HLA-A alleles among Armanis. HLA-A*23 was also common among Turkamans. HLA-A*11 and -A*26 were most frequent among the Balouch subpopulation. The former allele was also frequent among Bandaris. HLA-A*02 was identified as the most common HLA-A allele among Turk, Arab and Fars subpopulations. HLA-A*30 were strongly enriched among Gilakis. A total of 31 HLA-B alleles were detected across the target population. While all alleles were present among Fars subgroup, Armanis and Turkamans had the lowest degree of diversity among the alleles examined. Moreover, HLA-B*35 and B*49 alleles were strongly enriched among Armanis and Turkamans, respectively. A total of 13 HLA-C alleles were identified across the population, all of which were present in the Fars subpopulation. HLA-C*03 and C*04 were the only HLA-C alleles identified among the Bandari subpopulation. HLA-DRB1*08 was not detected in any subpopulation other than Fars. HLA-DRB1*16 was significantly enriched among Bandaris. These data have practical significance in anthropological studies, disease association investigations and bone marrow transplantation.
Assuntos
Antígenos HLA-A , Antígenos HLA-C , Alelos , Frequência do Gene/genética , Antígenos HLA-A/genética , Antígenos HLA-B/genética , Antígenos HLA-C/genética , Cadeias HLA-DRB1/genética , Haplótipos/genética , Humanos , Irã (Geográfico)RESUMO
Doxorubicin is a chemotherapeutic agent that inhibits topoisomerase II, intercalates within DNA base pairs and results in oxidative DNA damage, thus inducing cell apoptosis. Although it is effective in the treatment of a wide range of human cancers, the emergence of resistance to this drug can increase tumour growth and impact patients' survival. Numerous molecular mechanisms and signalling pathways have been identified that induce resistance to doxorubicin via stimulation of cell proliferation, cell cycle switch and preclusion of apoptosis. A number of microRNAs (miRNAs) and long non-coding RNAs (lncRNAs) have also been identified that alter sensitivity to doxorubicin. Understanding the particular impact of these non-coding RNAs in conferring resistance to doxorubicin has considerable potential to improve selection of chemotherapeutic regimens for cancer patients. Moreover, modulation of expression of these transcripts is a putative strategy for combating resistance. In the current paper, the influence of miRNAs and lncRNAs in the modification of resistance to doxorubicin is discussed.
Assuntos
MicroRNAs , Neoplasias , RNA Longo não Codificante , Doxorrubicina/farmacologia , Doxorrubicina/uso terapêutico , Resistencia a Medicamentos Antineoplásicos/genética , Humanos , MicroRNAs/genética , MicroRNAs/farmacologia , Neoplasias/tratamento farmacológico , Neoplasias/genética , Neoplasias/metabolismo , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismoRESUMO
(1) Background: Genomic precision medicine (PM) utilises people's genomic data to inform the delivery of preventive and therapeutic health care. PM has not been well-established for use with people of Aboriginal and Torres Strait Islander ancestry due to the paucity of genomic data from these communities. We report the development of a new protocol using co-design methods to enhance the potential use of PM for Aboriginal Australians. (2) Methods: This iterative qualitative study consists of five main phases. Phase-I will ensure appropriate governance of the project and establishment of a Project Advisory Committee. Following an initial consultation with the Aboriginal community, Phase-II will invite community members to participate in co-design workshops. In Phase-III, the Chief Investigators will participate in co-design workshops and document generated ideas. The notes shall be analysed thematically in Phase-IV with Aboriginal community representatives, and the summary will be disseminated to the communities. In Phase-V, we will evaluate the co-design process and adapt our protocol for the use in partnership with other communities. (3) Discussion: This study protocol represents a crucial first step to ensure that PM research is relevant and acceptable to Aboriginal Australians. Without fair access to PM, the gap in health outcome between Aboriginal and non-Aboriginal Australians will continue to widen.
RESUMO
Congenital cataracts are one of the major causes of childhood-onset blindness around the world. Genetic diagnosis provides benefits through avoidance of unnecessary tests, surveillance of extraocular features, and genetic family information. In this study, we demonstrate the value of genome sequencing in improving diagnostic yield in congenital cataract patients and families. We applied genome sequencing to investigate 20 probands with congenital cataracts. We examined the added value of genome sequencing across a total cohort of 52 probands, including 14 unable to be diagnosed using previous microarray and exome or panel-based approaches. Although exome or genome sequencing would have detected the variants in 35/52 (67%) of the cases, specific advantages of genome sequencing led to additional diagnoses in 10% (5/52) of the overall cohort, and we achieved an overall diagnostic rate of 77% (40/52). Specific benefits of genome sequencing were due to detection of small copy number variants (2), indels in repetitive regions (2) or single-nucleotide variants (SNVs) in GC-rich regions (1), not detectable on the previous microarray, exome sequencing, or panel-based approaches. In other cases, SNVs were identified in cataract disease genes, including those newly identified since our previous study. This study highlights the additional yield of genome sequencing in congenital cataracts.
Assuntos
Catarata , Exoma , Catarata/diagnóstico , Catarata/genética , Mapeamento Cromossômico , Variações do Número de Cópias de DNA/genética , Exoma/genética , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Sequenciamento do ExomaRESUMO
Lung cancer is among the leading causes of cancer mortality and incidence in both sexes. Different classes of transcripts have been proposed as molecular markers in this type of cancer. Circular RNAs (circRNAs) are a group of transcripts with circular enclosed and stable configuration. These transcripts are stable in the blood, thus can be used as markers for detection of disorders. Moreover, dysregulation of circRNAs in the affected tissues of patients with different cancers shows their possible roles in the carcinogenesis. Several circRNAs including circPRKC1, circFGFR1, hsa-circ-0020123 and circTP63 have been found to be up-regulated in lung cancer samples. Meanwhile, cir-ITCH, hsa_circ_100395, hsa_circ_0033155, circRNF13, circNOL10, circ-UBR5, circPTK2 and circCRIM1 have been shown to be down-regulated in lung cancer tissues compared with noncancerous counterparts. Finally, prognostic values of circPRKC1, circFGFR1, has-circ-00120123, circTP63, circ_0067934, CDR1as, hsa_circRN_103809 and some other circRNAs have been appraised in lung cancer. In the current manuscript, we describe the impact and utility of circRNAs in the pathology of lung cancer.
Assuntos
Biomarcadores Tumorais/metabolismo , Carcinogênese/metabolismo , Neoplasias Pulmonares/metabolismo , RNA Circular/metabolismo , Animais , Biomarcadores Tumorais/genética , Carcinogênese/genética , Proliferação de Células/fisiologia , Humanos , Neoplasias Pulmonares/diagnóstico , Neoplasias Pulmonares/genética , RNA Circular/genética , Regulação para Cima/fisiologiaRESUMO
Epithelial to mesenchymal transition (EMT) is a course of action that enables a polarized epithelial cell to undertake numerous biochemical alterations that allow it to adopt features of mesenchymal cells such as high migratory ability, invasive properties, resistance to apoptosis, and importantly higher-order formation of extracellular matrix elements. EMT has important roles in implantation and gastrulation of the embryo, inflammatory reactions and fibrosis, and transformation of cancer cells, their invasiveness and metastatic ability. Regarding the importance of EMT in the invasive progression of cancer, this process has been well studies in in this context. Non-coding RNAs (ncRNAs) have been shown to exert critical function in the regulation of cellular processes that are involved in the EMT. These processes include regulation of some transcription factors namely SNAI1 and SNAI2, ZEB1 and ZEB2, Twist, and E12/E47, modulation of chromatin configuration, alternative splicing, and protein stability and subcellular location of proteins. In the present paper, we describe the influence of ncRNAs including microRNAs and long non-coding RNAs in the EMT process and their application as biomarkers for this process and cancer progression and their potential as therapeutic targets.
RESUMO
The pioneering discovery research of X-linked intellectual disability (XLID) genes has benefitted thousands of individuals worldwide; however, approximately 30% of XLID families still remain unresolved. We postulated that noncoding variants that affect gene regulation or splicing may account for the lack of a genetic diagnosis in some cases. Detecting pathogenic, gene-regulatory variants with the same sensitivity and specificity as structural and coding variants is a major challenge for Mendelian disorders. Here, we describe three pedigrees with suggestive XLID where distinctive phenotypes associated with known genes guided the identification of three different noncoding variants. We used comprehensive structural, single-nucleotide, and repeat expansion analyses of genome sequencing. RNA-Seq from patient-derived cell lines, reverse-transcription polymerase chain reactions, Western blots, and reporter gene assays were used to confirm the functional effect of three fundamentally different classes of pathogenic noncoding variants: a retrotransposon insertion, a novel intronic splice donor, and a canonical splice variant of an untranslated exon. In one family, we excluded a rare coding variant in ARX, a known XLID gene, in favor of a regulatory noncoding variant in OFD1 that correlated with the clinical phenotype. Our results underscore the value of genomic research on unresolved XLID families to aid novel, pathogenic noncoding variant discovery.