Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
1.
Int J Biol Macromol ; 264(Pt 1): 130421, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38423425

RESUMO

Infections caused by multidrug-resistant pathogens are one of the biggest challenges facing the healthcare system today. Quorum quenching (QQ) enzymes have the potential to be used as innovative enzyme-based antivirulence therapeutics to combat infections caused by multidrug-resistant pathogens. The main objective of this research was to describe the novel YtnP lactonase derived from the clinical isolate Stenotrophomonas maltophilia and to investigate its antivirulence potential against multidrug-resistant Pseudomonas aeruginosa MMA83. YtnP lactonase, the QQ enzyme, belongs to the family of metallo-ß-lactamases. The recombinant enzyme has several advantageous biotechnological properties, such as high thermostability, activity in a wide pH range, and no cytotoxic effect. High-performance liquid chromatography analysis revealed the activity of recombinant YtnP lactonase toward a wide range of N-acyl-homoserine lactones (AHLs), quorum sensing signaling molecules, with a higher preference for long-chain AHLs. Recombinant YtnP lactonase was shown to inhibit P. aeruginosa MMA83 biofilm formation, induce biofilm decomposition, and reduce extracellular virulence factors production. Moreover, the lifespan of MMA83-infected Caenorhabditis elegans was prolonged with YtnP lactonase treatment. YtnP lactonase showed synergistic inhibitory activity in combination with gentamicin and acted additively with meropenem against MMA83. The described properties make YtnP lactonase a promising therapeutic candidate for the development of next-generation antivirulence agents.


Assuntos
Pseudomonas aeruginosa , Stenotrophomonas maltophilia , Virulência , Stenotrophomonas maltophilia/genética , Fatores de Virulência , Percepção de Quorum , Acil-Butirolactonas , Hidrolases de Éster Carboxílico/farmacologia
2.
J Dairy Sci ; 106(11): 7447-7460, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37641316

RESUMO

Yogurt represent one of the oldest fermented foods containing viable lactic acid bacteria and many bioactive compounds that could exhibit beneficial effects on human health and train our immune system to better respond to invading pathogens. Streptococcus thermophilus and Lactobacillus delbrueckii ssp. bulgaricus are commonly used for yogurt preparation under controlled temperature and environmental conditions. In this study, we investigated probiotic features of S. thermophilus BGKMJ1-36 and L. bulgaricus BGVLJ1-21 strains isolated from artisanal sour milk and yogurt by using Caenorhabditis elegans as an in vivo model system. Further, we evaluated content of total fat, saturated fatty acids, proteins, and lactose, as well as vitamins and AA of yogurt prepared from above-mentioned starter cultures during 21 d of storage at 4°C to get insights of final product stability. We showed that S. thermophilus BGKMJ1-36 and L. bulgaricus BGVLJ1-21 strains applied in combination upregulated the expression of autophagy-related genes in C. elegans. Beside autophagy, we observed activation of TIR-1-dependent transcription of lysozyme-like antimicrobial genes involved in the immune defense of C. elegans. Upregulation of these genes strongly correlates with an increase in the longevity of the worms fed with yogurt culture bacteria. Further, we showed that yogurt prepared with S. thermophilus BGKMJ1-36 and L. bulgaricus BGVLJ1-21, as a final product, is rich with vitamin B2 and dominant AA known by their prolongevity properties. Taken together, our study pointed to the beneficial features of the tested starter cultures and yogurt and highlighted their potential to be used as a fermented food with added-value properties.

3.
Res Sq ; 2023 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-36824891

RESUMO

Venous leg ulcers (VLU) are the most common chronic wounds characterized by bacterial biofilms and perturbed microbiome. Staphylococcus epidermidis is primarily known as skin commensal beneficial for the host, however, some strains can form biofilms and cause infections. By employing shotgun metagenomic sequencing we show that genetic signatures of antimicrobial resistance, adhesion and biofilm formation in VLU isolates correlate with in vitro bacterial traits. We demonstrate that the capability of chronic wound isolates to form biofilms and elicit IL-8 and IL-1ß expression in human ex vivo wounds, correlates with the non-healing outcomes in patients with VLU. In contrast, commensal strains were incapable of surviving in the human ex vivo wounds. We show that major fitness traits of S. epidermis from VLU involve genes for resistance to methicillin and mupirocin, while the biofilm formation relied on the minimal number of genetic elements responsible for bacterial binding to fibronectin and fibrinogen. This underscores the importance of the emergence of treatment resistant virulent lineages in patients with non-healing wounds.

4.
Gut Microbes ; 14(1): 2127455, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36184742

RESUMO

Over-activated myeloid cells and disturbance in gut microbiota composition are critical factors contributing to the pathogenesis of Multiple Sclerosis (MS). Myeloid-derived suppressor cells (MDSCs) emerged as promising regulators of chronic inflammatory diseases, including autoimmune diseases. However, it remained unclear whether MDSCs display any therapeutic potential in MS, and how this therapy modulates gut microbiota composition. Here, we assessed the potential of in vitro generated bone marrow-derived MDSCs to ameliorate experimental autoimmune encephalomyelitis (EAE) in Dark Agouti rats and investigated how their application associates with the changes in gut microbiota composition. MDSCs differentiated with prostaglandin (PG)E2 (MDSC-PGE2) and control MDSCs (differentiated without PGE2) displayed strong immunosuppressive properties in vitro, but only MDSC-PGE2 significantly ameliorated EAE symptoms. This effect correlated with a reduced infiltration of Th17 and IFN-γ-producing NK cells, and an increased proportion of regulatory T cells in the CNS and spleen. Importantly, both MDSCs and MDSC-PGE2 prevented EAE-induced reduction of gut microbiota diversity, but only MDSC-PGE2 prevented the extensive alterations in gut microbiota composition following their early migration into Payer's patches and mesenteric lymph nodes. This phenomenon was related to the significant enrichment of gut microbial taxa with potential immunoregulatory properties, as well as higher levels of butyrate, propionate, and putrescine in feces. This study provides new insights into the host-microbiota interactions in EAE, suggesting that activated MDSCs could be potentially used as an efficient therapy for acute phases of MS. Considering a significant association between the efficacy of MDSC-PGE2 and gut microbiota composition, our findings also provide a rationale for further exploring the specific microbial metabolites in MS therapy.


Assuntos
Encefalomielite Autoimune Experimental , Microbioma Gastrointestinal , Esclerose Múltipla , Células Supressoras Mieloides , Animais , Butiratos/metabolismo , Dinoprostona/metabolismo , Células Supressoras Mieloides/metabolismo , Células Supressoras Mieloides/patologia , Propionatos/farmacologia , Putrescina/metabolismo , Ratos
5.
Int J Mol Sci ; 23(15)2022 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-35897798

RESUMO

Signal transduction systems are the key players of bacterial adaptation and survival. The orthodox two-component signal transduction systems perceive diverse environmental stimuli and their regulatory response leads to cellular changes. Although rarely described, the unorthodox three-component systems are also implemented in the regulation of major bacterial behavior such as the virulence of clinically relevant pathogen P. aeruginosa. Previously, we described a novel three-component system in P. capeferrum WCS358 (RclSAR) where the sensor kinase RclS stimulates the intI1 transcription in stationary growth phase. In this study, using rclS knock-out mutant, we identified RclSAR regulon in P. capeferrum WCS358. The RNA sequencing revealed that activity of RclSAR signal transduction system is growth phase dependent with more pronounced regulatory potential in early stages of growth. Transcriptional analysis emphasized the role of RclSAR in global regulation and indicated the involvement of this system in regulation of diverse cellular activities such as RNA binding and metabolic and biocontrol processes. Importantly, phenotypic comparison of WCS358 wild type and ΔrclS mutant showed that RclS sensor kinase contributes to modulation of antibiotic resistance, production of AHLs and siderophore as well as host cell adherence and cytotoxicity. Finally, we proposed the improved model of interplay between RclSAR, RpoS and LasIR regulatory systems in P. capeferrum WCS358.


Assuntos
Proteínas de Bactérias , Pseudomonas , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Regulação Bacteriana da Expressão Gênica , Pseudomonas/metabolismo , Pseudomonas aeruginosa/metabolismo , Regulon , Virulência/genética
6.
Pharmaceuticals (Basel) ; 15(3)2022 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-35337182

RESUMO

The rising incidence of antibiotic resistant microorganisms urges novel antimicrobials development with polyphenols as appealing potential therapeutics. We aimed to reveal the most promising polyphenols among hesperetin, hesperidin, naringenin, naringin, taxifolin, rutin, isoquercitrin, morin, chlorogenic acid, ferulic acid, p-coumaric acid, and gallic acid based on antimicrobial capacity, antibiofilm potential, and lack of cytotoxicity towards HaCaT, and to further test its antivirulence mechanisms. Although the majority of studied polyphenols were able to inhibit bacterial growth and biofilm formation, the most promising activities were observed for rutin. Further investigation proved rutin's ability to prevent/eradicate Pseudomonas aeruginosa and MRSA urinary catheter biofilms. Besides reduction of biofilm biomass, rutin antibiofilm mechanisms included reduction of cell viability, exopolysaccharide, and extracellular DNA levels. Moderate reduction of bacterial adhesion to human keratinocytes upon treatment was observed. Rutin antivirulence mechanisms included an impact on P. aeruginosa protease, pyocyanin, rhamnolipid, and elastase production and the downregulation of the lasI, lasR, rhlI, rhlR, pqsA and mvfR genes. Rutin also interfered with membrane permeability. Polyphenols could repress antibiotic resistant bacteria. Rutin has shown wide antimicrobial and antibiofilm capacity employing a range of mechanisms that might be used for the development of novel antimicrobials.

7.
Front Microbiol ; 12: 759378, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34790183

RESUMO

Cadmium (Cd) ranks seventh on the list of most significant potential threats to human health based on its suspected toxicity and the possibility of exposure to it. It has been reported that some bacterial exopolysaccharides (EPSs) have the ability to bind heavy metal ions. We therefore investigated the capacity of eight EPS-producing lactobacilli to adsorb Cd in the present study, and Lactiplantibacillus plantarum BGAN8 was chosen as the best candidate. In addition, we demonstrate that an EPS derived from BGAN8 (EPS-AN8) exhibits a high Cd-binding capacity and prevents Cd-mediated toxicity in intestinal epithelial Caco-2 cells. Simultaneous use of EPS-AN8 with Cd treatment prevents inflammation, disruption of tight-junction proteins, and oxidative stress. Our results indicate that the EPS in question has a strong potential to be used as a postbiotic in combatting the adverse effects of Cd. Moreover, we show that higher concentrations of EPS-AN8 can alleviate Cd-induced cell damage.

8.
Sci Rep ; 11(1): 21258, 2021 10 28.
Artigo em Inglês | MEDLINE | ID: mdl-34711881

RESUMO

The host-microbiota cross-talk represents an important factor contributing to innate immune response and host resistance during infection. It has been shown that probiotic lactobacilli exhibit the ability to modulate innate immunity and enhance pathogen elimination. Here we showed that heat-inactivated probiotic strain Lactobacillus curvatus BGMK2-41 stimulates immune response and resistance of the Caenorhabditis elegans against Staphylococcus aureus and Pseudomonas aeruginosa. By employing qRT-PCR and western blot analysis we showed that heat-inactivated BGMK2-41 activated PMK-1/p38 MAPK immunity pathway which prolongs the survival of C. elegans exposed to pathogenic bacteria in nematode killing assays. The C. elegans pmk-1 mutant was used to demonstrate a mechanistic basis for the antimicrobial potential of BGMK2-41, showing that BGMK2-41 upregulated PMK-1/p38 MAPK dependent transcription of C-type lectins, lysozymes and tight junction protein CLC-1. Overall, this study suggests that PMK-1/p38 MAPK-dependent immune regulation by BGMK2-41 is essential for probiotic-mediated C. elegans protection against gram-positive and gram-negative bacteria and could be further explored for development of probiotics with the potential to increase resistance of the host towards pathogens.


Assuntos
Infecções Bacterianas/imunologia , Infecções Bacterianas/microbiologia , Caenorhabditis elegans/microbiologia , Caenorhabditis elegans/fisiologia , Interações Hospedeiro-Patógeno/imunologia , Sistema de Sinalização das MAP Quinases , Probióticos , Animais , Infecções Bacterianas/mortalidade , Biomarcadores , Imunidade Inata , Imunomodulação , Probióticos/administração & dosagem , Taxa de Sobrevida
9.
Aging (Albany NY) ; 13(6): 8040-8054, 2021 03 26.
Artigo em Inglês | MEDLINE | ID: mdl-33770762

RESUMO

Gut homeostasis is maintained by the close interaction between commensal intestinal microbiota and the host, affecting the most complex physiological processes, such as aging. Some commensal bacteria with the potential to promote healthy aging arise as attractive candidates for the development of pro-longevity probiotics. Here, we showed that heat-inactivated human commensal Lactobacillus fermentum BGHV110 (BGHV110) extends the lifespan of Caenorhabditis elegans and improves age-related physiological features, including locomotor function and lipid metabolism. Mechanistically, we found that BGHV110 promotes HLH-30/TFEB-dependent autophagy to delay aging, as longevity assurance was completely abolished in the mutant lacking HLH-30, a major autophagy regulator in C. elegans. Moreover, we observed that BGHV110 partially decreased the content of lipid droplets in an HLH-30-dependent manner and, at the same time, slightly increased mitochondrial activity. In summary, this study demonstrates that specific factors from commensal bacteria can be used to exploit HLH-30/TFEB-mediated autophagy in order to promote longevity and fitness of the host.


Assuntos
Envelhecimento/metabolismo , Autofagia/fisiologia , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/metabolismo , Longevidade/fisiologia , Animais , Caenorhabditis elegans/microbiologia , Homeostase/fisiologia , Limosilactobacillus fermentum , Metabolismo dos Lipídeos/fisiologia , Mitocôndrias/metabolismo
10.
Front Immunol ; 12: 614599, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33692788

RESUMO

Widespread coronavirus disease (COVID)-19 is causing pneumonia, respiratory and multiorgan failure in susceptible individuals. Dysregulated immune response marks severe COVID-19, but the immunological mechanisms driving COVID-19 pathogenesis are still largely unknown, which is hampering the development of efficient treatments. Here we analyzed ~140 parameters of cellular and humoral immune response in peripheral blood of 41 COVID-19 patients and 16 age/gender-matched healthy donors by flow-cytometry, quantitative PCR, western blot and ELISA, followed by integrated correlation analyses with ~30 common clinical and laboratory parameters. We found that lymphocytopenia in severe COVID-19 patients (n=20) strongly affects T, NK and NKT cells, but not B cells and antibody production. Unlike increased activation of ICOS-1+ CD4+ T cells in mild COVID-19 patients (n=21), T cells in severe patients showed impaired activation, low IFN-γ production and high functional exhaustion, which correlated with significantly down-regulated HLA-DR expression in monocytes, dendritic cells and B cells. The latter phenomenon was followed by lower interferon responsive factor (IRF)-8 and autophagy-related genes expressions, and the expansion of myeloid derived suppressor cells (MDSC). Intriguingly, PD-L1-, ILT-3-, and IDO-1-expressing monocytic MDSC were the dominant producers of IL-6 and IL-10, which correlated with the increased inflammation and accumulation of regulatory B and T cell subsets in severe COVID-19 patients. Overall, down-regulated IRF-8 and autophagy-related genes expression, and the expansion of MDSC subsets could play critical roles in dysregulating T cell response in COVID-19, which could have large implications in diagnostics and design of novel therapeutics for this disease.


Assuntos
Proteínas Relacionadas à Autofagia/biossíntese , COVID-19/imunologia , Células Supressoras Mieloides/imunologia , SARS-CoV-2/imunologia , Subpopulações de Linfócitos T/imunologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Autofagia/imunologia , Proteínas Relacionadas à Autofagia/imunologia , Proteínas Relacionadas à Autofagia/metabolismo , COVID-19/metabolismo , COVID-19/patologia , COVID-19/virologia , Estudos de Casos e Controles , Estudos de Coortes , Feminino , Humanos , Imunidade , Ativação Linfocitária , Masculino , Pessoa de Meia-Idade , Monócitos/imunologia , Células Supressoras Mieloides/patologia , Subpopulações de Linfócitos T/patologia , Linfócitos T/imunologia
11.
Chem Biodivers ; 18(1): e2000786, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33188577

RESUMO

An increasing lack of available therapeutic options against Acinetobacter baumannii urged researchers to seek alternative ways to fight this extremely resistant nosocomial pathogen. Targeting its virulence appears to be a promising strategy, as it offers considerably reduced selection of resistant mutants. In this study, we tested antibiofilm potential of four synthetic chalcone derivatives against A. baumannii. Compound that showed the greatest activity was selected for further evaluation of its antivirulence properties. Real-time PCR was used to evaluate mRNA expression of biofilm-associated virulence factor genes (ompA, bap, abaI) in treated A. baumannii strains. Also, we examined virulence properties related to the expression of these genes, such as fibronectin- and collagen-mediated adhesion, surface motility, and quorum-sensing activity. The results revealed that the expression of all tested genes is downregulated together with the reduction of adhesion and motility. The conclusion is that 2'-hydroxy-2-methoxychalcone exhibits antivirulence activity against A. baumannii by inhibiting the expression of ompA and bap genes, which is reflected in reduced biofilm formation, adhesion, and surface motility.


Assuntos
Acinetobacter baumannii/fisiologia , Antibacterianos/farmacologia , Proteínas da Membrana Bacteriana Externa/genética , Biofilmes/efeitos dos fármacos , Chalcona/química , Expressão Gênica/efeitos dos fármacos , Acil-Butirolactonas/metabolismo , Antibacterianos/síntese química , Antibacterianos/química , Aderência Bacteriana/efeitos dos fármacos , Proteínas da Membrana Bacteriana Externa/metabolismo , Chalcona/síntese química , Chalcona/farmacologia , RNA Mensageiro/metabolismo
12.
Microorganisms ; 8(10)2020 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-33076224

RESUMO

Yogurt is a traditional fermented dairy product, prepared with starter cultures containing Streptococcus thermophilus and Lactobacillus bulgaricus that has gained widespread consumer acceptance as a healthy food. It is widely accepted that yogurt cultures have been recognized as probiotics, due to their beneficial effects on human health. In this study, we have characterized technological and health-promoting properties of autochthonous strains S. thermophilus BGKMJ1-36 and L. bulgaricus BGVLJ1-21 isolated from artisanal sour milk and yogurt, respectively, in order to be used as functional yogurt starter cultures. Both BGKMJ1-36 and BGVLJ1-21 strains have the ability to form curd after five hours at 42 °C, hydrolyze αs1-, ß-, and κ- casein, and to show antimicrobial activity toward Listeria monocytogenes. The strain BGKMJ1-36 produces exopolysaccharides important for rheological properties of the yogurt. The colonies of BGKMJ1-36 and BGVLJ1-21 strains that successfully survived transit of the yogurt through simulated gastrointestinal tract conditions have been tested for adhesion to intestinal epithelial Caco-2 cells. The results reveal that both strains adhere to Caco-2 cells and significantly upregulate the expression of autophagy-, tight junction proteins-, and anti-microbial peptides-related genes. Hence, both strains may be interesting for use as a novel functional starter culture for production of added-value yogurt with health-promoting properties.

13.
Sci Rep ; 10(1): 1347, 2020 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-31992761

RESUMO

The characterization of mechanisms involved in the positive effects of probiotic bacteria in various pathophysiological conditions is a prerogative for their safe and efficient application in biomedicine. We have investigated the immunological effects of live bacteria-free supernatant collected from GABA-producing Lactobacillus brevis BGZLS10-17 on Concanavalin A-stimulated mesenteric lymph node cells (MLNC), an in vitro model of activated immune cells. We have shown that GABA containing and GABA-free supernatant of Lactobacillus brevis BGZLS10-17 have strong immunoregulatory effects on MLNC. Further, GABA produced by this strain exhibit additional inhibitory effects on proliferation, IFN-γ and IL-17 production by MLNC, and the expression of MHCII and CD80 on antigen presenting cells. At the other hand, GABA-containing supernatants displayed the strongest stimulatory effects on the expression of immunoregulatory molecules, such as Foxp3+, IL-10, TGF-ß, CTLA4 and SIRP-α. By looking for the mechanisms of actions, we found that supernatants produced by BGZLS10-17 induce autophagy in different MLNC, such as CD4+ and CD8+ T lymphocytes, NK and NKT cells, as well as antigen presenting cells. Further, we showed that the stimulation of Foxp3+, IL-10 and TGF-ß expression by BGZLS10-17 produced GABA is completely mediated by the induction of ATG5 dependent autophagy, and that other molecules in the supernatants display GABA-, ATG5-, Foxp3+-, IL-10- and TGF-ß- independent, immunoregulatory effects.


Assuntos
Proteína 5 Relacionada à Autofagia/metabolismo , Autofagia , Interações Hospedeiro-Patógeno/imunologia , Imunomodulação , Levilactobacillus brevis/imunologia , Ácido gama-Aminobutírico/metabolismo , Animais , Autofagia/genética , Proteína 5 Relacionada à Autofagia/genética , Meios de Cultivo Condicionados , Metabolismo Energético , Feminino , Levilactobacillus brevis/metabolismo , Probióticos , Ratos , Transdução de Sinais , Ácido gama-Aminobutírico/farmacologia
14.
PLoS One ; 14(5): e0216773, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31075157

RESUMO

Bacteria active against multi-drug resistant pathogens, isolated by direct selection of colonies from clover silage samples, produce zones of inhibition against two Gram-negative (Klebsiella pneumoniae Ni9 and Pseudomonas aeruginosa MMA83) and two Gram-positive (Staphylococcus aureus ATCC25923 and Listeria monocytogenes ATCC19111) pathogens. Isolates BGSP7, BGSP9, BGSP11 and BGSP12 produced the largest zones of inhibition against all four pathogens when grown in LB broth with aeration at 37°C. Isolates BGSP7, BGSP9, BGSP11 and BGSP12 were identified as Brevibacillus laterosporus and pulsed field gel electrophoresis and extracellular protein profiles showed that three different strains (BGSP7, BGSP9 and BGSP11) were isolated. A semi-native SDS-PAGE (sodium dodecyl sulphate-polyacrylamide gel electrophoresis) gel overlay assay showed that BGSP7 and BGSP9 produce small antimicrobial molecules of about 1.5 kDa, while BGSP11 produces antimicrobial molecules of 1.5 and 6 kDa active against S. aureus ATCC25923. Amino acid analysis of two antimicrobial molecules (1583.73 Da; from BGSP7 and 1556.31 Da; from BGSP11) revealed that they have a similar composition and differ only by virtue of the presence of a methionine which is present only in BGSP11 molecule. Genome sequencing of the three isolates revealed the presence of gene clusters associated with the production of non-ribosomally synthesized peptides (brevibacillin, bogorol, gramicidin S, plipastatin and tyrocin) and bacteriocins (laterosporulin, a lactococcin 972-like bacteriocin, as well as putative linocin M18, sactipeptide, UviB and lantipeptide-like molecules). Ultimately, the purification of a number of antimicrobial molecules from each isolate suggests that they can be considered as potent biocontrol strains that produce an arsenal of antimicrobial molecules active against Gram-positive and Gram-negative multi-resistant pathogens, fungi and insects.


Assuntos
Antibacterianos/farmacologia , Brevibacillus/isolamento & purificação , Silagem/microbiologia , Bacteriocinas/genética , Brevibacillus/efeitos dos fármacos , Brevibacillus/genética , DNA Bacteriano/genética , Regulação Bacteriana da Expressão Gênica/efeitos dos fármacos , Temperatura Alta , Concentração de Íons de Hidrogênio , Cinética , Testes de Sensibilidade Microbiana
15.
Front Microbiol ; 10: 527, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30936860

RESUMO

Probiotic bacteria are recognized for their health-promoting properties, including maintenance of gut epithelial integrity and host immune system homeostasis. Taking into account the beneficial health-promoting effects of GABA, the presence of the gadB gene, encoding glutamate decarboxylase that converts L-glutamate to GABA, was analyzed in Lactic Acid Bacteria (LAB) natural isolates from Zlatar cheese. The results revealed that 52% of tested Lactobacillus spp. and 8% of Lactococcus spp. isolates harbor the gadB gene. Qualitative and quantitative analysis of GABA production performed by thin-layer chromatography (TLC) and high-performance liquid chromatography (HPLC) revealed the highest GABA production by Lactobacillus brevis BGZLS10-17. Since high GABA-producing LAB natural isolates are the most valuable source of naturally produced GABA, the probiotic properties of BGZLS10-17 were characterized. This study demonstrated high adhesion of BGZLS10-17 strain to Caco-2 cells and the ability to decrease the adhesion of Escherichia coli ATCC25922 and Salmonella enterica C29039. Treatment of differentiated Caco-2 cells monolayer with BGZLS10-17 supernatant containing GABA alleviated inflammation (production of IL-8) caused by IL-1ß and significantly stimulated the expression of tight junction proteins (zonulin, occludin, and claudin 4), as well as the expression of TGF-ß cytokine leading to the conclusion that immunosuppression and strengthening the tight junctions can have significant role in the maintenance of intestinal epithelial barrier integrity. Taken together the results obtained in this study support the idea that using of GABA producing BGZLS10-17 probiotic strain could be a good strategy to modulate immunological response in various inflammatory diseases, and at the same time, it could be a good candidate for adjunct starter culture for production of GABA-enriched dairy foods and beverages offering new perspectives in designing the novel functional foods.

16.
Front Microbiol ; 10: 412, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30891021

RESUMO

Listeria monocytogenes, the common foodborne pathogenic bacteria species, compromises the intestinal epithelial barrier, leading to development of the listeriosis, a severe disease especially among immunocompromised individuals. L. monocytogenes infection usually requires antibiotic treatment, however, excessive use of antibiotics promotes emergence of antibiotic resistance and the destruction of gut microbiota. Probiotics, including lactic acid bacteria (LAB), have been repeatedly proven as an alternative approach for the treatment of various infections. We have analyzed the potential of Enterococcus faecium BGPAS1-3, a dairy isolate exhibiting strong direct antilisterial effect, to modulate the response of differentiated Caco-2 intestinal epithelial cells to L. monocytogenes ATCC 19111 infection. We showed that the molecule with antilisterial effect is a bacterial cell-wall protein that is highly resistant to the high-temperature treatment. When we tested the antilisterial potential of heat-killed BGPAS1-3, we found that it could prevent tight junction disruption in differentiated Caco-2 monolayer infected with L. monocytogenes ATCC 19111, induce antilisterial host response mechanisms, and stimulate the production of protective TGF-ß in intestinal epithelial cells. We also showed that the modulation of MyD88 dependent TLR2 and TLR4 pathways by BGPAS1-3 are involved in host response against L. monocytogenes ATCC 19111. Since heat-killed BGPAS1-3 possess strong antilisterial effects, such postbiotic could be used as a controllable and safe therapeutic.

17.
PLoS One ; 13(8): e0201608, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30071077

RESUMO

Acinetobacter baumannii has been recognized as one of the most challeging pathogens in clinical settings worldwide. Outer membrane porins play a significant role in Acinetobacter antibiotic resistance and virulence. A. baumannii carbapenem resistance and virulence factor porin Omp33-36 was the subject of this study. We investigated the omp33-36 gene transcriptional response in the growth phase, its response to carbapenems, and the effect of contact with host cells. Additionally, the cytotoxic effect of A. baumannii towards keratinocytes was assessed, as well as correlation between omp33-36 gene transcription and cytotoxicity. Further, Acinetobacter spp. Omp33-36 was classified and its characteristics relevant for vaccine candidature were determined. The level of the omp33-36 gene transcription varied between growth phases, but a common pattern could not be established among different strains. Treatment with subinhibitory concentrations of carbapenems decreased, while contact with keratinocytes increased omp33-36 expression in the analysed A. baumannii strains. Variations in omp33-36 mRNA levels did not correlate with cytotoxicity levels. Decrease of omp33-36 mRNA during treatment with subinhibitory concentrations of carbapenems, indicated the importance of transcriptional changes in reversible resistance to carbapenems due to the absence of Omp33-36. The transcription of omp33-36 increased after contact with keratinocytes, indicating the important role of de novo transcription during the initial phase of A. baumannii infection. Primary structural analysis of Acinetobacter spp. Omp33-36 revealed three distinct groups (among four A. baumannii variants). Although we have shown that Omp33-36 was highly polymorphic, we propose a potential antigen (PLAEAAFL motif) for vaccine development. According to PROVEAN analysis, the highly polymorphic structure of Omp33-36 porin should not influence its function significantly.


Assuntos
Acinetobacter baumannii/metabolismo , Carbapenêmicos/metabolismo , Fatores de Virulência/genética , Acinetobacter baumannii/classificação , Acinetobacter baumannii/efeitos dos fármacos , Carbapenêmicos/farmacologia , Linhagem Celular , Farmacorresistência Bacteriana , Humanos , Queratinócitos/citologia , Queratinócitos/microbiologia , Filogenia , RNA Mensageiro/metabolismo , Transcrição Gênica , Fatores de Virulência/classificação , Fatores de Virulência/metabolismo
18.
Front Immunol ; 9: 942, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29770137

RESUMO

Albino Oxford (AO) rats are extremely resistant to induction of experimental autoimmune encephalomyelitis (EAE). EAE is an animal model of multiple sclerosis, a chronic inflammatory disease of the central nervous system (CNS), with established autoimmune pathogenesis. The autoimmune response against the antigens of the CNS is initiated in the peripheral lymphoid tissues after immunization of AO rats with CNS antigens. Subsequently, limited infiltration of the CNS occurs, yet without clinical sequels. It has recently become increasingly appreciated that gut-associated lymphoid tissues (GALT) and gut microbiota play an important role in regulation and propagation of encephalitogenic immune response. Therefore, modulation of AO gut microbiota by antibiotics was performed in this study. The treatment altered composition of gut microbiota in AO rats and led to a reduction in the proportion of regulatory T cells in Peyer's patches, mesenteric lymph nodes, and in lymph nodes draining the site of immunization. Upregulation of interferon-γ and interleukin (IL)-17 production was observed in the draining lymph nodes. The treatment led to clinically manifested EAE in AO rats with more numerous infiltrates and higher production of IL-17 observed in the CNS. Importantly, transfer of AO gut microbiota into EAE-prone Dark Agouti rats ameliorated the disease. These results clearly imply that gut microbiota is an important factor in AO rat resistance to EAE and that gut microbiota transfer is an efficacious way to treat CNS autoimmunity. These findings also support the idea that gut microbiota modulation has a potential as a future treatment of multiple sclerosis.


Assuntos
Resistência à Doença , Encefalomielite Autoimune Experimental/etiologia , Microbioma Gastrointestinal , Animais , Antibacterianos/farmacologia , Citocinas/metabolismo , Modelos Animais de Doenças , Resistência à Doença/imunologia , Encefalomielite Autoimune Experimental/metabolismo , Encefalomielite Autoimune Experimental/terapia , Transplante de Microbiota Fecal/métodos , Feminino , Microbioma Gastrointestinal/efeitos dos fármacos , Microbioma Gastrointestinal/imunologia , Linfonodos/imunologia , Linfonodos/metabolismo , Metagenoma , Metagenômica/métodos , Nódulos Linfáticos Agregados/imunologia , Nódulos Linfáticos Agregados/metabolismo , Ratos
19.
Front Microbiol ; 9: 78, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29441056

RESUMO

Enterococci have controversial status due to their emerging role in nosocomial infections and transmission of antibiotic resistance genes, while some enterococci strains are used as probiotics for humans and animals and starter cultures in dairy industry. In order to improve our understanding of factors involved in the safe use of enterococci as potential probiotics, the antibiotic susceptibility, virulence and probiotic traits of 75 dairy enterococci isolates belonging to Enterococcus durans (50), En. faecium (15), En. faecalis (6), En. italicus (3), and En. hirae (1) were evaluated. The results revealed that ciprofloxacin resistance and biofilm formation are correlated with isolates originated from Golija mountain (Serbia), while gelatinase activity was more common in isolates from Prigorje region (Croatia), pointing to uncontrolled use of antibiotics and anthropogenic impact on dairy products' microbiota in these regions. The virulence genes were sporadically present in 13 selected dairy enterococci isolates. Interestingly, biofilm formation was correlated with higher ability of strains to reduce the adhesion of E. coli and Salmonella Enteritidis to HT29-MTX cells. To our knowledge this is the first study reporting the presence of the esp gene (previously correlated with pathogenesis) in dairy enterococci isolates, mostly associated with the genes involved in adhesion property. Hence, the results of this study revealed that the virulence genes are sporadically present in dairy isolates and more correlated to adhesion properties and biofilm formation, implicating their role in gut colonization rather than to the virulence traits.

20.
Front Pharmacol ; 9: 1, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29387012

RESUMO

The aim of this study was to test the potential of high molecular weight exopolysaccharide (EPS) produced by the putative probiotic strain Lactobacillus paraplantarum BGCG11 (EPS CG11) to alleviate inflammatory pain in Wistar rats. The EPS CG11 was isolated from bacterial surface and was subjected to Fourier-transform infrared spectroscopy (FTIR) and thermal analysis. FTIR spectra confirmed the polysaccharide structure of isolated sample, while the thermal methods revealed good thermal properties of the polymer. The antihyperalgesic and antiedematous effects of the EPS CG11 were examined in the rat model of inflammation induced by carrageenan injection in hind paw. The results showed that the intraperitoneal administration of EPS CG11 produced a significant decrease in pain sensations (mechanical hyperalgesia) and a paw swelling in a dose-dependent manner as it was measured using Von Frey anesthesiometer and plethysmometer, respectively. These effects were followed by a decreased expression of IL-1ß and iNOS mRNAs in rat's paw tissue suggesting that the antihyperalgesic and antiedematous effects of the EPS CG11 are related to the suppression of inflammatory response. Additionally, we demonstrated that EPS CG11 exhibits immunosuppressive properties in the peritonitis model induced by carrageenan. Expression levels of pro-inflammatory mediators IL-1ß, TNF-α and iNOS were decreased, together with the enhanced secretion of anti-inflammatory IL-10 and IL-6 cytokines, while neutrophil infiltration was not changed. To the best of our knowledge, this is the first study which reports an antihyperalgesic effect as the novel property of bacterial EPSs. Given the high demands of pharmaceutical industry for the replacement of commonly used analgesics due to numerous side effects, this study describes a promising natural compound for the future pharmacological testing in the area.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA