Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
medRxiv ; 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38633787

RESUMO

Pioneering studies linking symptomatic disease and cough-mediated release of Mycobacterium tuberculosis (Mtb) established the infectious origin of tuberculosis (TB), simultaneously informing the pervasive notion that pathology is a prerequisite for Mtb transmission. Our prior work has challenged this assumption: by sampling TB clinic attendees, we detected equivalent release of Mtb-containing bioaerosols by confirmed TB patients and individuals not receiving a TB diagnosis, and we demonstrated a time-dependent reduction in Mtb bioaerosol positivity during six-months' follow-up, irrespective of anti-TB chemotherapy. Now, by extending bioaerosol sampling to a randomly selected community cohort, we show that Mtb release is common in a TB-endemic setting: of 89 participants, 79.8% (71/89) produced Mtb bioaerosols independently of QuantiFERON-TB Gold status, a standard test for Mtb infection; moreover, during two-months' longitudinal sampling, only 2% (1/50) were serially Mtb bioaerosol negative. These results necessitate a reframing of the prevailing paradigm of Mtb transmission and infection, and may explain the current inability to elucidate Mtb transmission networks in TB-endemic regions.

3.
Proc Natl Acad Sci U S A ; 121(12): e2314813121, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38470917

RESUMO

Potential Mycobacterium tuberculosis (Mtb) transmission during different pulmonary tuberculosis (TB) disease states is poorly understood. We quantified viable aerosolized Mtb from TB clinic attendees following diagnosis and through six months' follow-up thereafter. Presumptive TB patients (n=102) were classified by laboratory, radiological, and clinical features into Group A: Sputum-Xpert Ultra-positive TB (n=52), Group B: Sputum-Xpert Ultra-negative TB (n=20), or Group C: TB undiagnosed (n=30). All groups were assessed for Mtb bioaerosol release at baseline, and subsequently at 2 wk, 2 mo, and 6 mo. Groups A and B were notified to the national TB program and received standard anti-TB chemotherapy; Mtb was isolated from 92% and 90% at presentation, 87% and 74% at 2 wk, 54% and 44% at 2 mo and 32% and 20% at 6 mo, respectively. Surprisingly, similar numbers were detected in Group C not initiating TB treatment: 93%, 70%, 48% and 22% at the same timepoints. A temporal association was observed between Mtb bioaerosol release and TB symptoms in all three groups. Persistence of Mtb bioaerosol positivity was observed in ~30% of participants irrespective of TB chemotherapy. Captured Mtb bacilli were predominantly acid-fast stain-negative and poorly culturable; however, three bioaerosol samples yielded sufficient biomass following culture for whole-genome sequencing, revealing two different Mtb lineages. Detection of viable aerosolized Mtb in clinic attendees, independent of TB diagnosis, suggests that unidentified Mtb transmitters might contribute a significant attributable proportion of community exposure. Additional longitudinal studies with sputum culture-positive and -negative control participants are required to investigate this possibility.


Assuntos
Bacillus , Mycobacterium tuberculosis , Tuberculose Pulmonar , Tuberculose , Humanos , Escarro/microbiologia , Tuberculose Pulmonar/diagnóstico , Tuberculose/microbiologia , Firmicutes , Sensibilidade e Especificidade
4.
Elife ; 122023 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-37530405

RESUMO

A DNA damage-inducible mutagenic gene cassette has been implicated in the emergence of drug resistance in Mycobacterium tuberculosis during anti-tuberculosis (TB) chemotherapy. However, the molecular composition and operation of the encoded 'mycobacterial mutasome' - minimally comprising DnaE2 polymerase and ImuA' and ImuB accessory proteins - remain elusive. Following exposure of mycobacteria to DNA damaging agents, we observe that DnaE2 and ImuB co-localize with the DNA polymerase III ß subunit (ß clamp) in distinct intracellular foci. Notably, genetic inactivation of the mutasome in an imuBAAAAGG mutant containing a disrupted ß clamp-binding motif abolishes ImuB-ß clamp focus formation, a phenotype recapitulated pharmacologically by treating bacilli with griselimycin and in biochemical assays in which this ß clamp-binding antibiotic collapses pre-formed ImuB-ß clamp complexes. These observations establish the essentiality of the ImuB-ß clamp interaction for mutagenic DNA repair in mycobacteria, identifying the mutasome as target for adjunctive therapeutics designed to protect anti-TB drugs against emerging resistance.


Assuntos
Proteínas de Bactérias , Mycobacterium tuberculosis , Proteínas de Bactérias/química , Mycobacterium tuberculosis/genética , Mutagênese , Reparo do DNA , Antituberculosos/farmacologia
5.
J Exp Med ; 219(12)2022 12 05.
Artigo em Inglês | MEDLINE | ID: mdl-36326687

RESUMO

Tuberculosis (TB) is an infectious disease bedeviled by complexity. This poses myriad challenges for a research ecosystem organized around specialist host- and/or pathogen-focused thrusts. Here, we highlight the key challenges and their implications for developing new tools to control TB.


Assuntos
Mycobacterium tuberculosis , Tuberculose , Humanos , Ecossistema
6.
Am J Respir Crit Care Med ; 206(2): 206-216, 2022 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-35584342

RESUMO

Rationale: Interrupting tuberculosis (TB) transmission requires an improved understanding of how and when the causative organism, Mycobacterium tuberculosis (Mtb), is aerosolized. Although cough is commonly assumed to be the dominant source of Mtb aerosols, recent evidence of cough-independent Mtb release implies the contribution of alternative mechanisms. Objectives: To compare the aerosolization of Mtb bacilli and total particulate matter from patients with TB during three separate respiratory maneuvers: tidal breathing (TiBr), FVC, and cough. Methods: Bioaerosol sampling and Mtb enumeration by live-cell, fluorescence microscopy were combined with real-time measurement of CO2 concentration and total particle counts from 38 patients with GeneXpert-positive TB before treatment initiation. Measurements and Main Results: For all maneuvers, the proportions of particles detected across five size categories were similar, with most particles falling between 0.5-5 µm. Although total particle counts were 4.8-fold greater in cough samples than either TiBr or FVC, all three maneuvers returned similar rates of positivity for Mtb. No correlation was observed between total particle production and Mtb count. Instead, for total Mtb counts, the variability between individuals was greater than the variability between sampling maneuvers. Finally, when modelled using 24-hour breath and cough frequencies, our data indicate that TiBr might contribute more than 90% of the daily aerosolized Mtb among symptomatic patients with TB. Conclusions: Assuming the number of viable Mtb organisms released offers a reliable proxy of patient infectiousness, our observations imply that TiBr and interindividual variability in Mtb release might be significant contributors to TB transmission among active cases.


Assuntos
Mycobacterium tuberculosis , Tuberculose , Aerossóis , Tosse/microbiologia , Humanos , Sistema Respiratório , Sensibilidade e Especificidade , Escarro/microbiologia
7.
EBioMedicine ; 78: 103949, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35325781

RESUMO

BACKGROUND: Despite being highly prevalent in hospitalised patients with severe HIV-associated tuberculosis (TB) and sepsis, little is known about the mycobacteriology of Mycobacterium tuberculosis bloodstream infection (MTBBSI). We developed methods to serially measure bacillary load in blood and used these to characterise MTBBSI response to anti-TB therapy (ATT) and relationship with mortality. METHODS: We established a microscopy method for direct visualisation of M. tuberculosis bacilli in blood using a novel lysis-concentration protocol and the fluorescent probe, 4-N,N-dimethylaminonaphthalimide-trehalose (DMN-Tre). We tested blood using GeneXpert® MTB/RIF-Ultra (Xpert-ultra) and Myco/F lytic culture after processing blood through lysis-wash steps to remove PCR inhibitors and anti-microbial drug carry-over. HIV-positive patients predicted to have MTBBSI gave blood samples 0, 4, 24, 48 and 72 h after ATT initiation. Bacillary loads were quantified using microscopy, Xpert-ultra cycle threshold, and culture time-to-positivity. Pharmacodynamics were modelled using these measures combined on an ordinal scale, including association with 12-week mortality. FINDINGS: M. tuberculosis was detected in 27 of 28 recruited participants; 25 (89%) by blood Xpert-ultra, 22 (79%) by DMN-Tre microscopy, and 21 (75%) by Myco/F lytic blood culture. Eight (29%) participants died by 12-week follow-up. In a combined pharmacodynamic model, predicted probabilities of negative DMN-Tre microscopy, blood Xpert-ultra, or blood culture after 72 h treatment were 0·64, 0·27, and 0·94, respectively, in those who survived, compared with 0·23, 0·06, and 0·71 in those who died (posterior probability of slower clearance of MTBBSI in those that died >0·99). DMN-Tre microscopy of blood demonstrated heterogenous bacillary morphologies, including microcolonies and clumps. Bacillary cell-length varied significantly with ATT exposure (mean cell-length increase 0·13 log-µm/day; 95%CrI 0·10-0·16). INTERPRETATION: Pharmacodynamics of MTBBSI treatment can be captured using DMN-Tre microscopy, blood Xpert-ultra and culture. This could facilitate interventional trials in severe HIV-associated TB. FUNDING: Wellcome Trust, NIH Fogarty International Center, South African MRC, NIHR(UK), National Research Foundation of South Africa.


Assuntos
Infecções por HIV , Mycobacterium tuberculosis , Tuberculose Pulmonar , Tuberculose , Estado Terminal , Infecções por HIV/complicações , Infecções por HIV/tratamento farmacológico , Humanos , Sensibilidade e Especificidade , Escarro/microbiologia , Tuberculose/complicações , Tuberculose/diagnóstico , Tuberculose/tratamento farmacológico , Tuberculose Pulmonar/microbiologia
8.
PLoS Pathog ; 17(2): e1009262, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33524021

RESUMO

Interrupting transmission is an attractive anti-tuberculosis (TB) strategy but it remains underexplored owing to our poor understanding of the events surrounding transfer of Mycobacterium tuberculosis (Mtb) between hosts. Determining when live, infectious Mtb bacilli are released and by whom has proven especially challenging. Consequently, transmission chains are inferred only retrospectively, when new cases are diagnosed. This process, which relies on molecular analyses of Mtb isolates for epidemiological fingerprinting, is confounded by the prolonged infectious period of TB and the potential for transmission from transient exposures. We developed a Respiratory Aerosol Sampling Chamber (RASC) equipped with high-efficiency filtration and sampling technologies for liquid-capture of all particulate matter (including Mtb) released during respiration and non-induced cough. Combining the mycobacterial cell wall probe, DMN-trehalose, with fluorescence microscopy of RASC-captured bioaerosols, we detected and quantified putative live Mtb bacilli in bioaerosol samples arrayed in nanowell devices. The RASC enabled non-invasive capture and isolation of viable Mtb from bioaerosol within 24 hours of collection. A median 14 live Mtb bacilli (range 0-36) were isolated in single-cell format from 90% of confirmed TB patients following 60 minutes bioaerosol sampling. This represented a significant increase over previous estimates of transmission potential, implying that many more organisms might be released daily than commonly assumed. Moreover, variations in DMN-trehalose incorporation profiles suggested metabolic heterogeneity in aerosolized Mtb. Finally, preliminary analyses indicated the capacity for serial image capture and analysis of nanowell-arrayed bacilli for periods extending into weeks. These observations support the application of this technology to longstanding questions in TB transmission including the propensity for asymptomatic transmission, the impact of TB treatment on Mtb bioaerosol release, and the physiological state of aerosolized bacilli.


Assuntos
Testes Respiratórios , Tosse/microbiologia , Mycobacterium tuberculosis/isolamento & purificação , Tuberculose Pulmonar/microbiologia , Adulto , Estudos de Coortes , Humanos , Microscopia de Fluorescência , Nanotecnologia/instrumentação
9.
Tuberculosis (Edinb) ; 126: 102038, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33316737

RESUMO

BACKGROUND: Symptoms of infectious respiratory illnesses are often assumed to drive transmission. However, production and release of Mycobacterium tuberculosis (Mtb) bioaerosols is poorly understood. We report quantitation of Mtb exhaled during specific respiratory manoeuvres. METHODS: Direct capture of nascent bioaerosol particles and indirect collection of aged particles was performed in 10 healthy subjects. Indirect and direct capture of exhaled viable Mtb bacilli was compared in 38 PTB patients and directly captured viable Mtb during cough and bronchiole-burst manoeuvres in 27 of the PTB patients. RESULTS: Direct sampling of healthy subjects captured larger bioaerosol volumes with higher proportions of 2-5 µm particles than indirect sampling. Indirect sampling identified viable Mtb in 92.1% (35 of 38) of PTB patients during 60-min relaxed breathing, median bacillary count 7.5 (IQR: 3.25-19). Direct sampling for 10-min identified Mtb in 97.4% (37 of 38) of PTB patients with higher bacilli counts (p < 0.001), median 24.5 (IQR:11.25-37.5). A short 5-min sampling regimen of 10 coughs or 10 bronchiole-burst manoeuvres yielded a median of 11 (IQR: 4-17) and 11 (IQR: 7-17.5) Mtb bacilli, respectively (p = 0.53). CONCLUSIONS: Peripheral lung bioaerosol released through deep exhalations alone contained viable Mtb suggesting non-cough transmission is possible in PTB.


Assuntos
Aerossóis/análise , Tosse/microbiologia , Pulmão/microbiologia , Mycobacterium tuberculosis/isolamento & purificação , Tuberculose Pulmonar/microbiologia , Adulto , Idoso , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Manejo de Espécimes , Tuberculose Pulmonar/transmissão
10.
PLoS One ; 15(9): e0238193, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32881875

RESUMO

INTRODUCTION: Detection of Mycobacterium tuberculosis (Mtb) in patient-derived bioaerosol is a potential tool to measure source case infectiousness. However, current bioaerosol sampling approaches have reported low detection yields in sputum-positive TB cases. To increase the utility of bioaerosol sampling, we present advances in bioaerosol collection and Mtb identification that improve detection yields. METHODS: A previously described Respiratory Aerosol Sampling Chamber (RASC) protocol, or "RASC-1", was modified to incorporate liquid collection of bioaerosol using a high-flow wet-walled cyclone (RASC-2). Individuals with GeneXpert-positive pulmonary TB were sampled pre-treatment over 60-minutes. Putative Mtb bacilli were detected in collected fluid by fluorescence microscopy utilising DMN-Trehalose. Exhaled air and bioaerosol volumes were estimated using continuous CO2 monitoring and airborne particle counting, respectively. Mtb capture was calculated per exhaled air volume sampled and bioaerosol volume for RASC-1 (n = 35) and for RASC-2 (n = 21). Empty chamber samples were collected between patients as controls. RESULTS: The optimised RASC-2 protocol sampled a median of 258.4L (IQR: 226.9-273.6) of exhaled air per patient compared with 27.5L (IQR: 23.6-30.3) for RASC-1 (p<0.0001). Bioaerosol volume collection was estimated at 2.3nL (IQR: 1.1-3.6) for RASC-2 compared with 0.08nL (IQR: 0.05-0.10) for RASC-1 (p<0.0001). The detection yield of viable Mtb improved from 43% (median 2 CFU, range: 1-14) to 95% (median 20.5 DMN-Trehalose positive bacilli, range: 2-155). These improvements represent a lowering of the limit of detection in the RASC-2 platform to 0.9 Mtb bacilli per 100L of exhaled air from 3.3 Mtb bacilli per 100L (RASC-1). CONCLUSION: This study demonstrates that technical improvements in particle collection together with sensitive detection enable rapid quantitation of viable Mtb in bioaerosols of sputum positive TB cases. Increased sampling sensitivity may allow future TB transmission studies to be extended to sputum-negative and subclinical individuals, and suggests the potential utility of bioaerosol measurement for rapid intervention in other airborne infectious diseases.


Assuntos
Aerossóis/análise , Manejo de Espécimes/métodos , Tuberculose/diagnóstico , Adulto , Dióxido de Carbono/química , Expiração , Feminino , Humanos , Masculino , Mycobacterium tuberculosis/isolamento & purificação , Tuberculose/microbiologia
11.
BMC Infect Dis ; 20(1): 587, 2020 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-32770954

RESUMO

BACKGROUND: Tuberculosis (TB) is transmitted in bioaerosols containing Mycobacterium tuberculosis (Mtb). Despite being central to ongoing TB transmission, no routine diagnostic assay exists to measure Mtb in bioaerosols. Furthermore, published studies of Mtb in bioaerosol samples have been limited to individuals with sputum-positive pulmonary TB. Notably, TB diagnosis is based on clinical symptoms and sputum laboratory findings. This is despite the fact that approximately half of all patients commencing TB treatment are sputum-negative, resulting in a high proportion of presumptive treatments. Here, we propose to use a sensitive air sampling protocol to investigate the prevalence of Mtb-containing bioaerosols in both sputum-positive and sputum-negative TB suspects, at the same time evaluating the potential to identify unrecognized transmitters of TB. METHODS: Our parallel-group design will identify viable Mtb in bioaerosols produced by individuals attending a TB clinic in South Africa. Sampling will be performed on eligible individuals presenting with symptoms indicative of TB and repeated at 14 days if initially positive. Participants will be prospectively classified into three distinct groups based on National TB Control Program (NTBCP) criteria: Group A, TB notification with sputum-based laboratory confirmation; Group B, TB notification with empiric diagnosis; and Group C, individuals not notified. Group C individuals with detectable Mtb bioaerosol will be monitored until resolution of clinical and laboratory status. Collection of bioaerosol specimens will be via two consecutive sampling modalities: (1) direct sampling following a specific respiratory manoeuvre; and (2) indirect sampling during passive respiratory activity. Bioaerosol specimens will be analyzed for viable Mtb using DMN-trehalose staining and live-cell fluorescence microscopy. Mtb genomes and mycobacterial and host lipids will be detected using droplet digital PCR and mass spectrometry analyses, respectively. The primary objective is to determine the prevalence of Mtb bioaerosols in all TB clinic attendees and in each of the groups. Secondary objectives are to investigate differences in prevalence of Mtb bioaerosol by HIV status and current isoniazid preventive therapy (IPT) use; we will also determine the impact of anti-TB chemotherapy on Mtb-containing bioaerosol production. DISCUSSION: Respiratory bioaerosol has a potential role in non-invasive TB diagnosis, infectivity measurement and treatment monitoring. TRIAL REGISTRATION: ClinicalTrials.gov: NCT04241809 . Date of Registration: 27/1/2020.


Assuntos
Aerossóis/análise , Manejo de Espécimes/métodos , Tuberculose Pulmonar/diagnóstico , Adulto , DNA Bacteriano/química , DNA Bacteriano/metabolismo , Feminino , Humanos , Masculino , Espectrometria de Massas , Pessoa de Meia-Idade , Mycobacterium tuberculosis/genética , Mycobacterium tuberculosis/isolamento & purificação , Reação em Cadeia da Polimerase , África do Sul , Escarro/microbiologia
12.
BMC Infect Dis ; 20(1): 624, 2020 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-32838751

RESUMO

An amendment to this paper has been published and can be accessed via the original article.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA