Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
mSphere ; 3(6)2018 11 28.
Artigo em Inglês | MEDLINE | ID: mdl-30487156

RESUMO

CsrBs are bacterial highly conserved and multiple-copy noncoding small RNAs (sRNAs) that play major roles in cell physiology and virulence. In the Vibrio genus, they are known to be regulated by the two-component system VarS/VarA. They modulate the well-characterized quorum sensing pathway controlling virulence and luminescence in Vibrio cholerae and Vibrio harveyi, respectively. Remarkably, Vibrio tasmaniensis LGP32, an oyster pathogen that belongs to the Splendidus clade, was found to have four copies of csrB, named csrB1-4, compared to two to three copies in other Vibrio species. Here, we show that the extra csrB4 copy results from a csrB3 gene duplication, a characteristic of the Splendidus clade. Interestingly, csrB genes are regulated in different ways in V. tasmaniensis, with csrB1 expression being independent of the VarS/VarA system. We found that a complex regulatory network involving CsrBs, quorum sensing, and the stationary-phase sigma factor σS redundantly but differentially controls the production of two secreted metalloproteases, Vsm and PrtV, the former being a major determinant of the V. tasmaniensis extracellular product toxicity. In particular, we identified a novel VarS/VarA-dependent but CsrB-independent pathway that controls positively both Vsm production and PrtV production as well as rpoS expression. Altogether, our data show that a csrB gene duplication event in V. tasmaniensis supported the evolution of the regulatory network controlling the expression of major toxic secreted metalloproteases, thereby increasing redundancy and enabling the integration of additional input signals.IMPORTANCE The conserved CsrB sRNAs are an example of sibling sRNAs, i.e., sRNAs which are present in multiple copies in genomes. This report illustrates how new copies arise through gene duplication events and highlights two evolutionary advantages of having such multiple copies: differential regulation of the multiple copies allows integration of different input signals into the regulatory network of which they are parts, and the high redundancy that they provide confers a strong robustness to the system.


Assuntos
Duplicação Gênica , Regulação Bacteriana da Expressão Gênica , Metaloproteases/biossíntese , RNA não Traduzido/genética , Vibrio/enzimologia , Vibrio/genética , Percepção de Quorum , Vibrio/metabolismo
2.
Environ Microbiol ; 18(3): 875-88, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26472275

RESUMO

Recent studies revealed that several vibrio species have evolved the capacity to survive inside host cells. However, it is still often ignored if intracellular stages are required for pathogenicity. Virulence of Vibrio tasmaniensis LGP32, a strain pathogenic for Crassostrea gigas oysters, depends on entry into hemocytes, the oyster immune cells. We investigated here the mechanisms of LGP32 intracellular survival and their consequences on the host-pathogen interaction. Entry and survival inside hemocytes were required for LGP32-driven cytolysis of hemocytes, both in vivo and in vitro. LGP32 intracellular stages showed a profound boost in metabolic activity and a major transcription of antioxidant and copper detoxification genes, as revealed by RNA sequencing. LGP32 isogenic mutants showed that resistance to oxidative stress and copper efflux are two main functions required for vibrio intracellular stages and cytotoxicity to hemocytes. Copper efflux was also essential for host colonization and virulence in vivo. Altogether, our results identify copper resistance as a major mechanism to resist killing by phagocytes, induce cytolysis of immune cells and colonize oysters. Selection of such resistance traits could arise from vibrio interactions with copper-rich environmental niches including marine invertebrates, which favour the emergence of pathogenic vibrios resistant to intraphagosomal killing across animal species.


Assuntos
Cobre/metabolismo , Crassostrea/microbiologia , Hemócitos/microbiologia , Frutos do Mar/microbiologia , Vibrio/metabolismo , Animais , Proteínas de Bactérias/genética , Sequência de Bases , Citoplasma , Hemócitos/imunologia , Homeostase , Interações Hospedeiro-Patógeno , Análise de Sequência de RNA , Superóxido Dismutase/genética , Superóxido Dismutase/metabolismo , Vibrio/genética , Vibrio/patogenicidade , Virulência
3.
Structure ; 22(4): 582-9, 2014 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-24657091

RESUMO

The outer membrane portal of the Klebsiella oxytoca type II secretion system, PulD, is a prototype of a family of proteins, the secretins, which are essential components of many bacterial secretion and pilus assembly machines. PulD is a homododecamer with a periplasmic vestibule and an outer chamber on either side of a membrane-spanning region that is poorly resolved by electron microscopy. Membrane insertion involves the formation of a dodecameric membrane-embedded intermediate. Here, we describe an amino acid substitution in PulD that blocks its assembly at this intermediate "prepore" stage. Electron microscopy indicated that the prepore has an apparently normal periplasmic vestibule but a poorly organized outer chamber. A peptide loop around this amino acid appears to be important for the formation/stability of the fully folded complex. A similar assembly intermediate results from creation of the same amino acid substitution in the Pseudomonas aeruginosa secretin XcpQ.


Assuntos
Proteínas da Membrana Bacteriana Externa/ultraestrutura , Proteínas de Bactérias/ultraestrutura , Klebsiella oxytoca/química , Proteínas de Membrana/ultraestrutura , Substituição de Aminoácidos , Proteínas da Membrana Bacteriana Externa/química , Proteínas da Membrana Bacteriana Externa/genética , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Sistemas de Secreção Bacterianos/fisiologia , Escherichia coli/genética , Escherichia coli/metabolismo , Expressão Gênica , Klebsiella oxytoca/metabolismo , Proteínas de Membrana/química , Proteínas de Membrana/genética , Ligação Proteica , Dobramento de Proteína , Multimerização Proteica , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Pseudomonas aeruginosa/química , Pseudomonas aeruginosa/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/ultraestrutura , Homologia Estrutural de Proteína , Relação Estrutura-Atividade
4.
J Bacteriol ; 196(1): 121-8, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24142256

RESUMO

Proteins called secretins form large multimeric complexes that are essential for macromolecular transit across the outer membrane of Gram-negative bacteria. Evidence suggests that the channels formed by some secretin complexes are not tightly closed, but their permeability properties have not been well characterized. Here, we used cell-free synthesis coupled with spontaneous insertion into liposomes to investigate the permeability of the secretin PulD. Leakage assays using preloaded liposomes indicated that PulD allows the efflux of small fluorescent molecules with a permeation cutoff similar to that of general porins. Other secretins were also found to form similar pores. To define the polypeptide region involved in determining the pore size, we analyzed a collection of PulD variants and studied the roles of gates 1 and 2, which were previously reported to affect the pore size of filamentous phage f1 secretin pIV, in assembly and pore formation. Liposome leakage and a novel in vivo assay showed that replacement of the conserved proline residue at position 443 in PulD by leucine increased the apparent size of the pore. The in vitro approach described here could be used to study the pore properties of membrane proteins whose production in vivo is toxic.


Assuntos
Proteínas da Membrana Bacteriana Externa/química , Proteínas da Membrana Bacteriana Externa/metabolismo , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Escherichia coli/química , Escherichia coli/metabolismo , Porinas/química , Porinas/metabolismo , Multimerização Proteica , Proteínas da Membrana Bacteriana Externa/genética , Análise Mutacional de DNA , Proteínas de Escherichia coli/genética , Corantes Fluorescentes/metabolismo , Lipossomos/metabolismo , Permeabilidade , Porinas/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA