Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
World J Microbiol Biotechnol ; 40(8): 250, 2024 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-38910219

RESUMO

Aeromonas hydrophila, an opportunistic warm water pathogen, has always been a threat to aquaculture, leading to substantial economic losses. Vaccination of the cultured fish would effectively prevent Aeromoniasis, and recent advancements in nanotechnology show promise for efficacious vaccines. Oral delivery would be the most practical and convenient method of vaccine delivery in a grow-out pond. This study studied the immunogenicity and protective efficacy of a nanoparticle-loaded outer membrane protein A from A. hydrophila in the zebrafish model. The protein was over-expressed, purified, and encapsulated using poly lactic-co-glycolic acid (PLGA) nanoparticles via the double emulsion method. The PLGA nanoparticles loaded with recombinant OmpA (rOmpA) exhibited a size of 295 ± 15.1 nm, an encapsulation efficiency of 72.52%, and a polydispersity index of 0.292 ± 0.07. Scanning electron microscopy confirmed the spherical and isolated nature of the PLGA-rOmpA nanoparticles. The protective efficacy in A. hydrophila-infected zebrafish after oral administration of the nanovaccine resulted in relative percentage survival of 77.7. Gene expression studies showed significant upregulation of immune genes in the vaccinated fish. The results demonstrate the usefulness of oral administration of nanovaccine-loaded rOmpA as a potential vaccine since it induced a robust immune response and conferred adequate protection against A. hydrophila in zebrafish, Danio rerio.


Assuntos
Aeromonas hydrophila , Proteínas da Membrana Bacteriana Externa , Vacinas Bacterianas , Doenças dos Peixes , Infecções por Bactérias Gram-Negativas , Nanopartículas , Proteínas Recombinantes , Peixe-Zebra , Animais , Peixe-Zebra/imunologia , Aeromonas hydrophila/imunologia , Aeromonas hydrophila/genética , Proteínas da Membrana Bacteriana Externa/imunologia , Proteínas da Membrana Bacteriana Externa/genética , Doenças dos Peixes/prevenção & controle , Doenças dos Peixes/imunologia , Doenças dos Peixes/microbiologia , Vacinas Bacterianas/imunologia , Vacinas Bacterianas/administração & dosagem , Vacinas Bacterianas/genética , Administração Oral , Infecções por Bactérias Gram-Negativas/prevenção & controle , Infecções por Bactérias Gram-Negativas/veterinária , Infecções por Bactérias Gram-Negativas/imunologia , Proteínas Recombinantes/genética , Proteínas Recombinantes/imunologia , Proteínas Recombinantes/administração & dosagem , Copolímero de Ácido Poliláctico e Ácido Poliglicólico/química , Vacinação , Nanovacinas
2.
Mol Biotechnol ; 2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38512427

RESUMO

Aquaculture production has been incurring economic losses due to infectious diseases by opportunistic pathogens like Aeromonas hydrophila, a bacterial agent that commonly affects warm water aquacultured fish. Developing an effective vaccine with an appropriate delivery system can elicit an immune response that would be a useful disease management strategy through prevention. The most practical method of administration would be the oral delivery of vaccine developed through nano-biotechnology. In this study, the gene encoding an outer membrane protein, maltoporin, of A. hydrophila, was identified, sequenced, and studied using bioinformatics tools to examine its potential as a vaccine candidate. Using a double emulsion method, the molecule was cloned, over-expressed, and encapsulated in a biodegradable polymer polylactic-co-glycolic acid (PLGA). The immunogenicity of maltoporin was identified through in silico analysis and thus taken up for nanovaccine preparation. The encapsulation efficiency of maltoporin was 63%, with an in vitro release of 55% protein in 48 h. The particle size and morphology of the encapsulated protein exhibited properties that could induce stability and function as an effective carrier system to deliver the antigen to the site and trigger immune response. Results show promise that the PLGA-mediated delivery system could be a potential carrier in developing a fish vaccine via oral administration. They provide insight for developing nanovaccine, since sustained in vitro release and biocompatibility were observed. There is further scope to study the immune response and examine the protective immunity induced by the nanoparticle-encapsulated maltoporin by oral delivery to fish.

3.
Microb Pathog ; 185: 106429, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37940062

RESUMO

Eco-friendly alternatives such as probiotics are needed to prevent economically relevant infectious diseases for a successful disease-free harvest in aquaculture. The use of antibiotics has been the favored practice, but its empirical and indiscriminate use has led to antibiotic resistance in the aquatic environment and residues in the food fish. With this rationale, a probiotic was isolated from tilapia, a commercially important cultured fish worldwide. The characteristics of the probiotic were checked against common bacterial pathogens affecting aquaculture. In vitro tests demonstrated the inhibitory effects of the isolated probiotic on the growth of Aeromonas hydrophila, Edwardsiella tarda, Vibrio anguillarum, and V. alginolyticus. The candidate probiotic, referred to as TLDK301120C24, was identified as Bacillus subtilis by a battery of biochemical tests and genotypic confirmation by 16S rDNA sequencing. The in vitro results revealed the ability of the probiotic to withstand the gut conditions that included pH range of 3-9, salt concentration of 0.5-6%, and bile salt concentration of up to 6%. The isolate could hydrolyze starch (12-14 mm clearance zone), protein (20-22 mm clearance zone), and cellulose (22-24 mm clearance zone). Further, the inhibitory ability of the probiotic against aquatic pathogens was determined in vivo using gnotobiotic zebrafish by employing a novel approach that involved tagging the probiotic with a red fluorescent protein and the pathogens with a green fluorescent protein, respectively. The colonizing ability of probiotics and its inhibitory effects against the pathogens were evaluated by fluorescence microscopy, PCR, and estimation of viable counts in LBA + Amp plates. Finally, the competitive inhibition and exclusion of fish pathogens A. hydrophila and E. tarda by B. subtilis was confirmed semi-quantitatively, through challenge experiments. This study shows the potential of B. subtilis as a probiotic and its excellent ability to inhibit major fish pathogens in vivo and in vitro. It also shows promise as a potent substitute for antibiotics.


Assuntos
Doenças dos Peixes , Probióticos , Tilápia , Animais , Bacillus subtilis/genética , Peixe-Zebra , Probióticos/farmacologia , Antibacterianos/farmacologia , Doenças dos Peixes/prevenção & controle , Doenças dos Peixes/microbiologia
4.
Vaccines (Basel) ; 11(10)2023 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-37896958

RESUMO

The application of nanotechnology in aquaculture for developing efficient vaccines has shown great potential in recent years. Nanovaccination, which involves encapsulating antigens of fish pathogens in various polymeric materials and nanoparticles, can afford protection to the antigens and a sustained release of the molecule. Oral administration of nanoparticles would be a convenient and cost-effective method for delivering vaccines in aquaculture while eliminating the need for stressful, labour-intensive injectables. The small size of nanoparticles allows them to overcome the degradative digestive enzymes and help deliver antigens to the target site of the fish more effectively. This targeted-delivery approach would help trigger cellular and humoral immune responses more efficiently, thereby enhancing the protective efficacy of vaccines. This is particularly relevant for combating diseases caused by pathogens like Aeromonas hydrophila, a major fish pathogen responsible for significant morbidity and mortality in the aquaculture sector. While the use of nanoparticle-based vaccines in aquaculture has shown promise, concerns exist about the potential toxicity associated with certain types of nanoparticles. Some nanoparticles have been found to exhibit varying degrees of toxicity, and their safety profiles need to be thoroughly assessed before widespread application. The introduction of nanovaccines has opened new vistas for improving aquaculture healthcare, but must be evaluated for potential toxicity before aquaculture applications. Details of nanovaccines and their mode of action, with a focus on protecting fish from infections and outbreaks caused by the ubiquitous opportunistic pathogen A. hydrophila, are reviewed here.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA