RESUMO
OBJECTIVE: Simultaneous activation of ß2- and ß3-adrenoceptors (ARs) improves whole-body metabolism via beneficial effects in skeletal muscle and brown adipose tissue (BAT). Nevertheless, high-efficacy agonists simultaneously targeting these receptors whilst limiting activation of ß1-ARs - and thus inducing cardiovascular complications - are currently non-existent. Therefore, we here developed and evaluated the therapeutic potential of a novel ß2-and ß3-AR, named ATR-127, for the treatment of obesity and its associated metabolic perturbations in preclinical models. METHODS: In the developmental phase, we assessed the impact of ATR-127's on cAMP accumulation in relation to the non-selective ß-AR agonist isoprenaline across various rodent ß-AR subtypes, including neonatal rat cardiomyocytes. Following these experiments, L6 muscle cells were stimulated with ATR-127 to assess the impact on GLUT4-mediated glucose uptake and intramyocellular cAMP accumulation. Additionally, in vitro, and in vivo assessments are conducted to measure ATR-127's effects on BAT glucose uptake and thermogenesis. Finally, diet-induced obese mice were treated with 5 mg/kg ATR-127 for 21 days to investigate the effects on glucose homeostasis, body weight, fat mass, skeletal muscle glucose uptake, BAT thermogenesis and hepatic steatosis. RESULTS: Exposure of L6 muscle cells to ATR-127 robustly enhanced GLUT4-mediated glucose uptake despite low intramyocellular cAMP accumulation. Similarly, ATR-127 markedly increased BAT glucose uptake and thermogenesis both in vitro and in vivo. Prolonged treatment of diet-induced obese mice with ATR-127 dramatically improved glucose homeostasis, an effect accompanied by decreases in body weight and fat mass. These effects were paralleled by an enhanced skeletal muscle glucose uptake, BAT thermogenesis, and improvements in hepatic steatosis. CONCLUSIONS: Our results demonstrate that ATR-127 is a highly effective, novel ß2- and ß3-ARs agonist holding great therapeutic promise for the treatment of obesity and its comorbidities, whilst potentially limiting cardiovascular complications. As such, the therapeutic effects of ATR-127 should be investigated in more detail in clinical studies.
Assuntos
Tecido Adiposo Marrom , Camundongos Endogâmicos C57BL , Músculo Esquelético , Animais , Tecido Adiposo Marrom/metabolismo , Tecido Adiposo Marrom/efeitos dos fármacos , Camundongos , Músculo Esquelético/metabolismo , Músculo Esquelético/efeitos dos fármacos , Masculino , Ratos , Obesidade/metabolismo , Obesidade/tratamento farmacológico , Fígado Gorduroso/metabolismo , Fígado Gorduroso/tratamento farmacológico , Termogênese/efeitos dos fármacos , Agonistas Adrenérgicos/farmacologiaRESUMO
Transgenesis is an essential technique for any genetic model. Tol2-based transgenesis paired with Gateway-compatible vector collections has transformed zebrafish transgenesis with an accessible modular system. Here, we establish several next-generation transgenesis tools for zebrafish and other species to expand and enhance transgenic applications. To facilitate gene regulatory element testing, we generated Gateway middle entry vectors harboring the small mouse beta-globin minimal promoter coupled to several fluorophores, CreERT2 and Gal4. To extend the color spectrum for transgenic applications, we established middle entry vectors encoding the bright, blue-fluorescent protein mCerulean and mApple as an alternative red fluorophore. We present a series of p2A peptide-based 3' vectors with different fluorophores and subcellular localizations to co-label cells expressing proteins of interest. Finally, we established Tol2 destination vectors carrying the zebrafish exorh promoter driving different fluorophores as a pineal gland-specific transgenesis marker that is active before hatching and through adulthood. exorh-based reporters and transgenesis markers also drive specific pineal gland expression in the eye-less cavefish (Astyanax). Together, our vectors provide versatile reagents for transgenesis applications in zebrafish, cavefish and other models.
Assuntos
Técnicas de Transferência de Genes , Peixe-Zebra , Animais , Camundongos , Peixe-Zebra/genética , Peixe-Zebra/metabolismo , Animais Geneticamente Modificados , Plasmídeos/genética , Regiões Promotoras Genéticas/genética , Elementos de DNA Transponíveis/genéticaRESUMO
DISP3 (PTCHD2), a sterol-sensing domain-containing protein, is highly expressed in neural tissue but its role in neural differentiation is unknown. In the present study we used a multipotent cerebellar progenitor cell line, C17.2, to investigate the impact of DISP3 on the proliferation and differentiation of neural precursors. We found that ectopically expressed DISP3 promotes cell proliferation and alters expression of genes that are involved in tumorigenesis. Finally, the differentiation profile of DISP3-expressing cells was altered, as evidenced by delayed expression of neural specific markers and a reduced capacity to undergo neural differentiation.