Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Magn Reson Imaging ; 2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38722043

RESUMO

BACKGROUND: Emerging evidence suggests that fasting could play a key role in cancer treatment. Its metabolic effects on gliomas require further investigation. PURPOSE: To design a multi-voxel 1H/31P MR-spectroscopic imaging (MRSI) protocol for noninvasive metabolic monitoring of cerebral, fasting-induced changes on an individual patient/tumor level, and to assess its technical reliability/reproducibility. STUDY TYPE: Prospective. POPULATION: MRS phantom. Twenty-two patients (mean age = 61, 6 female) with suspected WHO grade II-IV glioma examined before and after 72-hour-fasting prior to biopsy/resection. FIELD STRENGTH/SEQUENCE: 3-T, 1H decoupled 3D 31P MRSI, 2D 1H sLASER MRSI at an echo time of 144 msec, 2D 1H MRSI (as water reference), T1-weighted, T1-weighted contrast-enhanced, T2-weighted, and FLAIR. sLASER and PRESS sequences were used for phantom measurements. ASSESSMENT: Phantom measurements and spectral simulations were performed with various echo-times for protocol optimization. In vivo spectral analyses were conducted using LCModel and AMARES, obtaining quality/fitting parameters (linewidth, signal-to-noise-ratio, and uncertainty measures of fitting) and metabolite intensities. The volume of glioma sub-regions was calculated and correlated with MRS findings. Ex-vivo spectra of necrotic tumor tissues were obtained using high-resolution magic-angle spinning (HR-MAS) technique. STATISTICAL TESTS: Wilcoxon signed-rank test, Bland-Altman plots, and coefficient of variation were used for repeatability analysis of quality/fitting parameters and metabolite concentrations. Spearman ρ correlation for the concentration of ketone bodies with volumes of glioma sub-regions was determined. A P-value <0.05 was considered statistically significant. RESULTS: 1H and 31P repeatability measures were highly consistent between the two sessions. ß-hydroxybutyrate and acetoacetate were detectable (fitting-uncertainty <50%) in glioma sub-regions of all patients who completed the 72-hour-fasting cycle. ß-hydroxybutyrate accumulation was significantly correlated with the necrotic/non-enhancing tumor core volume (ρ = 0.81) and validated using ex-vivo 1H HR-MAS. DATA CONCLUSION: We propose a comprehensive MRS protocol that may be used for monitoring cerebral, fasting-induced changes in patients with glioma. EVIDENCE LEVEL: 1 TECHNICAL EFFICACY: Stage 4.

2.
Cell Death Discov ; 10(1): 8, 2024 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-38182566

RESUMO

Glioblastoma is an incurable brain tumor with a median survival below two years. Trials investigating targeted therapy with inhibitors of the kinase mTOR have produced ambiguous results. Especially combination of mTOR inhibition with standard temozolomide radiochemotherapy has resulted in reduced survival in a phase II clinical trial. To date, this phenomenon is only poorly understood. To recreate the therapeutic setting in vitro, we exposed glioblastoma cell lines to co-treatment with rapamycin and temozolomide and assessed cell viability, DNA damage and reactive oxygen species. Additionally, we employed a novel translatomic based mass spectrometry approach ("mePROD") to analyze acute changes in translated proteins. mTOR inhibition with rapamycin protected glioblastoma cells from temozolomide toxicity. Following co-treatment of temozolomide with rapamycin, an increased translation of reactive oxygen species (ROS)-detoxifying proteins was detected by mass spectrometry. This was accompanied by improved ROS-homeostasis and reduced DNA damage. Additionally, rapamycin induced the expression of the DNA repair enzyme O-6-methylguanine-DNA methyltransferase (MGMT) in glioblastoma cells with an unmethylated MGMT gene promotor. Inhibition of mTOR antagonized the cytotoxic effects of temozolomide in vitro. The induction of antioxidant defences and MGMT are two underlying candidate mechanisms. Further functional experiments in vitro and in vivo are warranted to characterize this effect that appears relevant for combinatorial therapeutic strategies.

3.
Neuro Oncol ; 26(3): 503-513, 2024 03 04.
Artigo em Inglês | MEDLINE | ID: mdl-37818983

RESUMO

BACKGROUND: The IDH-wildtype glioblastoma (GBM) patients have a devastating prognosis. Here, we analyzed the potential prognostic value of global DNA methylation of the tumors. METHODS: DNA methylation of 492 primary samples and 31 relapsed samples, each treated with combination therapy, and of 148 primary samples treated with radiation alone were compared with patient survival. We determined the mean methylation values and estimated the immune cell infiltration from the methylation data. Moreover, the mean global DNA methylation of 23 GBM cell lines was profiled and correlated to their cellular radiosensitivity as measured by colony formation assay. RESULTS: High mean DNA methylation levels correlated with improved survival, which was independent from known risk factors (MGMT promoter methylation, age, extent of resection; P = 0.009) and methylation subgroups. Notably, this correlation was also independent of immune cell infiltration, as higher number of immune cells indeed was associated with significantly better OS but lower mean methylation. Radiosensitive GBM cell lines had a significantly higher mean methylation than resistant lines (P = 0.007), and improved OS of patients treated with radiotherapy alone was also associated with higher DNA methylation (P = 0.002). Furthermore, specimens of relapsed GBM revealed a significantly lower mean DNA methylation compared to the matching primary tumor samples (P = 0.041). CONCLUSIONS: Our results indicate that mean global DNA methylation is independently associated with outcome in glioblastoma. The data also suggest that a higher DNA methylation is associated with better radiotherapy response and less aggressive phenotype, both of which presumably contribute to the observed correlation with OS.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Humanos , Glioblastoma/patologia , Prognóstico , Metilação de DNA , Metilases de Modificação do DNA/genética , Proteínas Supressoras de Tumor/genética , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Neoplasias Encefálicas/radioterapia , Enzimas Reparadoras do DNA/genética
4.
Neurooncol Adv ; 5(1): vdad131, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38024242

RESUMO

Background: The biological understanding of glioblastoma (GB) with gliomatosis cerebri (GC) pattern is poor due to the absence of GC-specific studies. Here, we aimed to identify molecular or clinical parameters that drive GC growth. Methods: From our methylome database of IDH (isocitrate dehydrogenase)-wildtype GB, we identified 158 non-GC and 65 GC cases. GC cases were subdivided into diffuse-infiltrative (subtype 1), multifocal (subtype 2), or tumors with 1 solid mass (subtype 3). We compared clinical, histological, and molecular parameters and conducted a reference-free tumor deconvolution of DNA methylation data based on latent methylation components (LMC). Results: GC subtype 1 less frequently showed contrast-enhancing tumors, and more frequently lacked morphological GB criteria despite displaying GB DNA methylation profile. However, the tumor deconvolution did not deliver a specific LMC cluster for either of the GC subtypes. Employing the reference-based analysis MethylCIBERSORT, we did not identify significant differences in tumor cell composition. The majority of both GC and non-GC patients received radiochemotherapy as first-line treatment, but there was a major imbalance for resection. The entire GC cohort had significantly shorter overall survival (OS) and time to treatment failure (TTF) than the non-GC cohort. However, when filtering for cases in which only stereotactic biopsy was performed, the comparison of OS and TTF lost statistical significance. Conclusions: Our study offers clinically relevant information by demonstrating a similar outcome for GB with GC growth pattern in the surgically matched analysis. The limited number of cases in the GC subgroups encourages the validation of our DNA methylation analysis in larger cohorts.

5.
Neuro Oncol ; 25(2): 315-325, 2023 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-35868257

RESUMO

BACKGROUND: DNA methylation-based tumor classification allows an enhanced distinction into subgroups of glioblastoma. However, the clinical benefit of DNA methylation-based stratification of glioblastomas remains inconclusive. METHODS: Multicentric cohort study including 430 patients with newly diagnosed glioblastoma subjected to global DNA methylation profiling. Outcome measures included overall survival (OS), progression-free survival (PFS), prognostic relevance of EOR and MGMT promoter methylation status as well as a surgical benefit for recurrent glioblastoma. RESULTS: 345 patients (80.2%) fulfilled the inclusion criteria and 305 patients received combined adjuvant therapy. DNA methylation subclasses RTK I, RTK II, and mesenchymal (MES) revealed no significant survival differences (RTK I: Ref.; RTK II: HR 0.9 [95% CI, 0.64-1.28]; p = 0.56; MES: 0.69 [0.47-1.02]; p = 0.06). Patients with RTK I (GTR/near GTR: Ref.; PR: HR 2.87 [95% CI, 1.36-6.08]; p < 0.01) or RTK II (GTR/near GTR: Ref.; PR: HR 5.09 [95% CI, 2.80-9.26]; p < 0.01) tumors who underwent gross-total resection (GTR) or near GTR had a longer OS and PFS than partially resected patients. The MES subclass showed no survival benefit for a maximized EOR (GTR/near GTR: Ref.; PR: HR 1.45 [95% CI, 0.68-3.09]; p = 0.33). Therapy response predictive value of MGMT promoter methylation was evident for RTK I (HR 0.37 [95% CI, 0.19-0.71]; p < 0.01) and RTK II (HR 0.56 [95% CI, 0.34-0.91]; p = 0.02) but not the MES subclass (HR 0.52 [95% CI, 0.27-1.02]; p = 0.06). For local recurrence (n = 112), re-resection conveyed a progression-to-overall survival (POS) benefit (p < 0.01), which was evident in RTK I (p = 0.03) and RTK II (p < 0.01) tumors, but not in MES tumors (p = 0.33). CONCLUSION: We demonstrate a survival benefit from maximized EOR for newly diagnosed and recurrent glioblastomas of the RTK I and RTK II but not the MES subclass. Hence, it needs to be debated whether the MES subclass should be treated with maximal surgical resection, especially when located in eloquent areas and at time of recurrence.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Humanos , Glioblastoma/genética , Glioblastoma/cirurgia , Glioblastoma/tratamento farmacológico , Estudos de Coortes , Metilação de DNA , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/cirurgia , Neoplasias Encefálicas/patologia , Prognóstico , Estudos Retrospectivos
6.
Cell Death Discov ; 8(1): 409, 2022 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-36202792

RESUMO

Although malignant gliomas frequently show aberrant activation of the mammalian target of rapamycin (mTOR), mTOR inhibitors have performed poorly in clinical trials. Besides regulating cell growth and translation, mTOR controls the initiation of autophagy. By recycling cellular components, autophagy can mobilize energy resources, and has thus been attributed cancer-promoting effects. Here, we asked whether the activation of autophagy represents an escape mechanism to pharmacological mTOR inhibition in glioma cells, and explored co-treatment with mTOR and autophagy inhibitors as a therapeutic strategy. Mimicking conditions of the glioma microenvironment, glioma cells were exposed to nutrient starvation and hypoxia. We analyzed autophagic activity, cell growth, viability and oxygen consumption following (co-)treatment with the mTOR inhibitors torin2 or rapamycin, and autophagy inhibitors bafilomycin A1 or MRT68921. Changes in global proteome were quantified by mass spectrometry. In the context of hypoxia and starvation, autophagy was strongly induced in glioma cells and further increased by mTOR inhibition. While torin2 enhanced glioma cell survival, co-treatment with torin2 and bafilomycin A1 failed to promote cell death. Importantly, treatment with bafilomycin A1 alone also protected glioma cells from cell death. Mechanistically, both compounds significantly reduced cell growth and oxygen consumption. Quantitative proteomics analysis showed that bafilomycin A1 induced broad changes in the cellular proteome. More specifically, proteins downregulated by bafilomycin A1 were associated with the mitochondrial respiratory chain and ATP synthesis. Taken together, our results show that activation of autophagy does not account for the cytoprotective effects of mTOR inhibition in our in vitro model of the glioma microenvironment. Our proteomic findings suggest that the pharmacological inhibition of autophagy induces extensive changes in the cellular proteome that can support glioma cell survival under nutrient-deplete and hypoxic conditions. These findings provide a novel perspective on the complex role of autophagy in gliomas.

7.
J Neurooncol ; 159(2): 243-259, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35864412

RESUMO

PURPOSE: Molecular diagnostics including next generation gene sequencing are increasingly used to determine options for individualized therapies in brain tumor patients. We aimed to evaluate the decision-making process of molecular targeted therapies and analyze data on tolerability as well as signals for efficacy. METHODS: Via retrospective analysis, we identified primary brain tumor patients who were treated off-label with a targeted therapy at the University Hospital Frankfurt, Goethe University. We analyzed which types of molecular alterations were utilized to guide molecular off-label therapies and the diagnostic procedures for their assessment during the period from 2008 to 2021. Data on tolerability and outcomes were collected. RESULTS: 413 off-label therapies were identified with an increasing annual number for the interval after 2016. 37 interventions (9%) were targeted therapies based on molecular markers. Glioma and meningioma were the most frequent entities treated with molecular matched targeted therapies. Rare entities comprised e.g. medulloblastoma and papillary craniopharyngeoma. Molecular targeted approaches included checkpoint inhibitors, inhibitors of mTOR, FGFR, ALK, MET, ROS1, PIK3CA, CDK4/6, BRAF/MEK and PARP. Responses in the first follow-up MRI were partial response (13.5%), stable disease (29.7%) and progressive disease (46.0%). There were no new safety signals. Adverse events with fatal outcome (CTCAE grade 5) were not observed. Only, two patients discontinued treatment due to side effects. Median progression-free and overall survival were 9.1/18 months in patients with at least stable disease, and 1.8/3.6 months in those with progressive disease at the first follow-up MRI. CONCLUSION: A broad range of actionable alterations was targeted with available molecular therapeutics. However, efficacy was largely observed in entities with paradigmatic oncogenic drivers, in particular with BRAF mutations. Further research on biomarker-informed molecular matched therapies is urgently necessary.


Assuntos
Neoplasias Encefálicas , Terapia de Alvo Molecular , Humanos , Mutação , Proteínas Tirosina Quinases , Proteínas Proto-Oncogênicas , Proteínas Proto-Oncogênicas B-raf , Estudos Retrospectivos
8.
J Clin Med ; 10(5)2021 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-33801401

RESUMO

Local anesthetics are commonly administered by nuchal infiltration to provide a temporary interscalene brachial plexus block (ISB) in a surgical setting. Although less commonly reported, local anesthetics can induce central nervous system toxicity. In this case study, we present three patients with acute central nervous system toxicity induced by local anesthetics applied during ISB with emphasis on neurological symptoms, key neuroradiological findings and functional outcome. Medical history, clinical and imaging findings, and outcome of three patients with local anesthetic-induced toxic left hemisphere syndrome during left ISB were analyzed. All patients were admitted to our neurological intensive care unit between November 2016 and September 2019. All three patients presented in poor clinical condition with impaired consciousness and left hemisphere syndrome. Electroencephalography revealed slow wave activity in the affected hemisphere of all patients. Seizure activity with progression to status epilepticus was observed in one patient. In two out of three patients, cortical FLAIR hyperintensities and restricted diffusion in the territory of the left internal carotid artery were observed in magnetic resonance imaging. Assessment of neurological severity scores revealed spontaneous partial reversibility of neurological symptoms. Local anesthetic-induced CNS toxicity during ISB can lead to severe neurological impairment and anatomically variable cerebral lesions.

9.
J Cancer Res Clin Oncol ; 147(8): 2373-2383, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-33538917

RESUMO

PURPOSE: Classification and treatment of WHO grade II/III gliomas have dramatically changed. Implementing molecular markers into the WHO classification raised discussions about the significance of grading and clinical trials showed overall survival (OS) benefits for combined radiochemotherapy. As molecularly stratified treatment data outside clinical trials are scarce, we conducted this retrospective study. METHODS: We identified 343 patients (1995-2015) with newly diagnosed WHO grade II/III gliomas and analyzed molecular markers, patient characteristics, symptoms, histology, treatment, time to treatment failure (TTF) and OS. RESULTS: IDH-status was available for all patients (259 mutant, 84 IDH1-R132H-non-mutant). Molecular subclassification was possible in 173 tumors, resulting in diagnosis of 80 astrocytomas and 93 oligodendrogliomas. WHO grading remained significant for OS in astrocytomas/IDH1-R132H-non-mutant gliomas (p < 0.01) but not for oligodendroglioma (p = 0.27). Chemotherapy (and temozolomide in particular) showed inferior OS compared to radiotherapy in astrocytomas (median 6.1/12.1 years; p = 0.03) and oligodendrogliomas (median 13.2/not reached (n.r.) years; p = 0.03). While radiochemotherapy improved TTF in oligodendroglioma (median radiochemotherapy n.r./chemotherapy 3.8/radiotherapy 7.3 years; p < 0.001/ = 0.06; OS data immature) the effect, mainly in combination with temozolomide, was weaker in astrocytomas (median radiochemotherapy 6.7/chemotherapy 2.3/radiotherapy 2.0 years; p < 0.001/ = 0.11) and did not translate to improved OS (median 8.4 years). CONCLUSION: This is one of the largest retrospective, real-life datasets reporting treatment and outcome in low-grade gliomas incorporating molecular markers. Current histologic grading features remain prognostic in astrocytomas while being insignificant in oligodendroglioma with interfering treatment effects. Chemotherapy (temozolomide) was less effective than radiotherapy in both astrocytomas and oligodendrogliomas while radiochemotherapy showed the highest TTF in oligodendrogliomas.


Assuntos
Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/patologia , Glioma/tratamento farmacológico , Glioma/patologia , Temozolomida/uso terapêutico , Adulto , Idoso , Idoso de 80 Anos ou mais , Neoplasias Encefálicas/epidemiologia , Neoplasias Encefálicas/genética , Feminino , Alemanha/epidemiologia , Glioma/epidemiologia , Glioma/genética , Humanos , Isocitrato Desidrogenase/genética , Masculino , Pessoa de Meia-Idade , Mutação , Gradação de Tumores , Estudos Retrospectivos , Análise de Sobrevida , Resultado do Tratamento , Organização Mundial da Saúde , Adulto Jovem
10.
Oncology ; 99(4): 215-224, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33472203

RESUMO

INTRODUCTION: Gliomatosis cerebri (GC) is defined by diffuse, widespread glial tumor growth affecting three or more cerebral lobes. Previous studies in gliomas found no distinct histological or molecular GC subtype, yet the presence of GC is associated with worse median overall survival (OS). Here, we explored whether differing therapeutic strategies in first-line treatment could account for this. METHODS: From our University Cancer Center database, 47 patients with histological diagnosis of WHO grade II or III glioma and GC imaging pattern were identified. GC criteria were confirmed by independent review. Patients with WHO grade II or III glioma with non-GC pattern served as control cohort (n = 343). RESULTS: Within the GC patient cohort, lower WHO grade, mutated isocitrate dehydrogenase 1 (IDH1) status, and absence of contrast enhancement were associated with better OS. Compared to the control cohort, patients with GC had significantly shorter OS independent of histological diagnosis or IDH1 mutation status. Patients with GC preferentially received chemotherapy alone (62 vs. 18%), and less frequently radiochemotherapy (21 vs. 27%). OS was significantly shorter in the GC cohort compared to the non-GC cohort both for chemotherapy (3.9 vs. 7.6 years, p = 0.0085) and for combined radiochemotherapy (1.1 vs. 8.4 years, p < 0.0001). However, when only patients who received biopsy plus chemotherapy were analyzed, the differences lost statistical significance (3.5 vs. 6.6 years, p = 0.196). CONCLUSION: We found major differences in the selection of first-line therapies of GC versus non-GC patients. Our results suggest that these differences may partly account for the worse prognosis of GC patients.


Assuntos
Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/mortalidade , Glioma/tratamento farmacológico , Glioma/mortalidade , Adulto , Idoso , Idoso de 80 Anos ou mais , Neoplasias Encefálicas/patologia , Neoplasias Encefálicas/radioterapia , Estudos de Coortes , Feminino , Glioma/patologia , Glioma/radioterapia , Humanos , Isocitrato Desidrogenase/genética , Masculino , Pessoa de Meia-Idade , Mutação , Gradação de Tumores , Prognóstico , Taxa de Sobrevida , Resultado do Tratamento , Adulto Jovem
11.
Cancers (Basel) ; 12(8)2020 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-32756332

RESUMO

BACKGROUND: The epidermal growth factor receptor (EGFR) signaling pathway is genetically activated in approximately 50% of glioblastomas (GBs). Its inhibition has been explored clinically but produced disappointing results, potentially due to metabolic effects that protect GB cells against nutrient deprivation and hypoxia. Here, we hypothesized that EGFR activation could disable metabolic adaptation and define a GB cell population sensitive to starvation. METHODS: Using genetically engineered GB cells to model different types of EGFR activation, we analyzed changes in metabolism and cell survival under conditions of the tumor microenvironment. RESULTS: We found that expression of mutant EGFRvIII as well as EGF stimulation of EGFR-overexpressing cells impaired physiological adaptation to starvation and rendered cells sensitive to hypoxia-induced cell death. This was preceded by adenosine triphosphate (ATP) depletion and an increase in glycolysis. Furthermore, EGFRvIII mutant cells had higher levels of mitochondrial superoxides potentially due to decreased metabolic flux into the serine synthesis pathway which was associated with a decrease in the NADPH/NADP+ ratio. CONCLUSIONS: The finding that EGFR activation renders GB cells susceptible to starvation could help to identify a subgroup of patients more likely to benefit from starvation-inducing therapies.

12.
Ticks Tick Borne Dis ; 11(5): 101491, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32723645

RESUMO

Tick-borne encephalitis (TBE) is an emerging infectious disease in large parts of Europe and Asia. Whereas other members of the Flaviviridae family can harm fetal development, there are only very few reports on TBE virus (TBEV) infections during pregnancy. Thus, the implications for fetal health remain largely unknown. In this study, we present detailed pre- and postnatal health assessment of three children in the context of severe maternal TBEV infection during pregnancy. Following acute TBEV infection of the mothers, intrauterine growth and development of all children were assessed by repetitive prenatal ultrasound. Postnatal examinations included clinical and virological analyses over a follow-up period of 18 months. Prenatally, no signs of intrauterine growth restrictions were observed. All neonates were delivered at term. Umbilical cord blood of the newborns tested negative for TBEV RNA. Virus-specific IgG antibodies were positive at birth but negative at 9 and 11 months of age. Importantly, IgM antibodies remained negative throughout the period of observation. Taken together, these clinical and virological data strongly suggest that fetal TBEV infection did not occur, despite severe manifestations in the mothers.


Assuntos
Vírus da Encefalite Transmitidos por Carrapatos/fisiologia , Encefalite Transmitida por Carrapatos/transmissão , Transmissão Vertical de Doenças Infecciosas , Complicações na Gravidez/virologia , Adulto , Encefalite Transmitida por Carrapatos/virologia , Feminino , Alemanha , Humanos , Gravidez , Segundo Trimestre da Gravidez , Terceiro Trimestre da Gravidez , Suécia , Gêmeos Dizigóticos
13.
J Clin Med ; 8(12)2019 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-31766326

RESUMO

(1) Background: The phase 2 Regorafenib in Relapsed Glioblastoma (REGOMA) trial indicated a survival benefit for patients with first recurrence of a glioblastoma when treated with the multikinase inhibitor regorafenib (REG) instead of lomustine. The aim of this retrospective study was to investigate REG penetration to cerebrospinal fluid (CSF), treatment efficacy, and effects on magnetic resonance imaging (MRI) in patients with recurrent high-grade gliomas. (2) Methods: Patients were characterized by histology, adverse events, steroid treatment, overall survival (OS), and MRI growth pattern. REG and its two active metabolites were quantified by liquid chromatography/tandem mass spectrometry in patients' serum and CSF. (3) Results: 21 patients mainly with IDH-wildtype glioblastomas who had been treated with REG were retrospectively identified. Thirteen CFS samples collected from 3 patients of the cohort were available for pharmacokinetic testing. CSF levels of REG and its metabolites were significantly lower than in serum. Follow-up MRI was available in 19 patients and showed progressive disease (PD) in all but 2 patients. Two distinct MRI patterns were identified: 7 patients showed classic PD with progression of contrast enhancing lesions, whereas 11 patients showed a T2-dominant MRI pattern characterized by a marked reduction of contrast enhancement. Median OS was significantly better in patients with a T2-dominant growth pattern (10 vs. 27 weeks respectively, p = 0.003). Diffusion restrictions were observed in 13 patients. (4) Conclusion: REG and its metabolites were detectable in CSF. A distinct MRI pattern that might be associated with an improved OS was observed in half of the patient cohort. Treatment response in the total cohort was poor.

14.
Int J Mol Sci ; 20(18)2019 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-31510109

RESUMO

Glioblastomas (GBs) frequently display activation of the epidermal growth factor receptor (EGFR) and mammalian target of rapamycin (mTOR). mTOR exists as part of two multiprotein complexes, mTOR complex 1 (mTORC1) and 2 (mTORC2). In GBs, mTORC1 inhibitors such as rapamycin have performed poorly in clinical trials, and in vitro protect GB cells from nutrient and oxygen deprivation. Next generation ATP-competitive mTOR inhibitors with affinity for both mTOR complexes have been developed, but data exploring their effects on GB metabolism are scarce. In this study, we compared the ATP-competitive mTORC1/2 inhibitors torin2, INK-128 and NVP-Bez235 to the allosteric mTORC1 inhibitor rapamycin under conditions that mimic the glioma microenvironment. In addition to inhibiting mTORC2 signaling, INK-128 and NVP-Bez235 more effectively blocked mTORC1 signaling and prompted a stronger cell growth inhibition, partly by inducing cell cycle arrest. However, under hypoxic and nutrient-poor conditions mTORC1/2 inhibitors displayed even stronger cytoprotective effects than rapamycin by reducing oxygen and glucose consumption. Thus, therapies that arrest proliferation and inhibit anabolic metabolism must be expected to improve energy homeostasis of tumor cells. These results mandate caution when treating physiologically or therapeutically induced hypoxic GBs with mTOR inhibitors.


Assuntos
Apoptose/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Glioma/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Transdução de Sinais/efeitos dos fármacos , Serina-Treonina Quinases TOR/antagonistas & inibidores , Benzoxazóis/farmacologia , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Glioma/tratamento farmacológico , Glioma/patologia , Humanos , Imidazóis/farmacologia , Alvo Mecanístico do Complexo 1 de Rapamicina/antagonistas & inibidores , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Alvo Mecanístico do Complexo 2 de Rapamicina/antagonistas & inibidores , Alvo Mecanístico do Complexo 2 de Rapamicina/metabolismo , Naftiridinas/farmacologia , Pirimidinas/farmacologia , Quinolinas/farmacologia , Sirolimo/farmacologia , Serina-Treonina Quinases TOR/metabolismo
15.
Brain ; 140(10): 2623-2638, 2017 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-28969371

RESUMO

Glioblastomas are characterized by fast uncontrolled growth leading to hypoxic areas and necrosis. Signalling from EGFR via mammalian target of rapamycin complex 1 (mTORC1) is a major driver of cell growth and proliferation and one of the most commonly altered signalling pathways in glioblastomas. Therefore, epidermal growth factor receptor and mTORC1 signalling are plausible therapeutic targets and clinical trials with inhibitors are in progress. However, we have previously shown that epidermal growth factor receptor and mTORC1 inhibition triggers metabolic changes leading to adverse effects under the conditions of the tumour microenvironment by protecting from hypoxia-induced cell death. We hypothesized that conversely mTORC1 activation sensitizes glioma cells to hypoxia-induced cell death. As a model for mTORC1 activation we used gene suppression of its physiological inhibitor TSC2 (TSC2sh). TSC2sh glioma cells showed increased sensitivity to hypoxia-induced cell death that was accompanied by an earlier ATP depletion and an increase in reactive oxygen species. There was no difference in extracellular glucose consumption but an altered intracellular metabolic profile with an increase of intermediates of the pentose phosphate pathway. Mechanistically, mTORC1 upregulated the first and rate limiting enzyme of the pentose phosphate pathway, G6PD. Furthermore, an increase in oxygen consumption in TSC2sh cells was detected. This appeared to be due to higher transcription rates of genes involved in mitochondrial respiratory function including PPARGC1A and PPARGC1B (also known as PGC-1α and -ß). The finding that mTORC1 activation causes an increase in oxygen consumption and renders malignant glioma cells susceptible to hypoxia and nutrient deprivation could help identify glioblastoma patient cohorts more likely to benefit from hypoxia-inducing therapies such as the VEGFA-targeting antibody bevacizumab in future clinical evaluations.


Assuntos
Morte Celular/efeitos dos fármacos , Hipóxia Celular/fisiologia , Complexos Multiproteicos/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Linhagem Celular Tumoral , Metilases de Modificação do DNA/genética , Enzimas Reparadoras do DNA/genética , Glioma/genética , Glioma/patologia , Glucose/metabolismo , Humanos , Isocitrato Desidrogenase/genética , Ácido Láctico/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina , Complexos Multiproteicos/genética , Mutação/genética , Consumo de Oxigênio , PTEN Fosfo-Hidrolase/genética , Espécies Reativas de Oxigênio/metabolismo , Serina-Treonina Quinases TOR/genética , Proteína 2 do Complexo Esclerose Tuberosa , Proteína Supressora de Tumor p53 , Proteínas Supressoras de Tumor/genética , Proteínas Supressoras de Tumor/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA