Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Sci Signal ; 14(670)2021 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-33593998

RESUMO

Cells use signaling pathways to receive and process information about their environment. These nonlinear systems rely on feedback and feedforward regulation to respond appropriately to changing environmental conditions. Mathematical models describing signaling pathways often lack predictive power because they are not trained on data that encompass the diverse time scales on which these regulatory mechanisms operate. We addressed this limitation by measuring transcriptional changes induced by the mating response in Saccharomyces cerevisiae exposed to different dynamic patterns of pheromone. We found that pheromone-induced transcription persisted after pheromone removal and showed long-term adaptation upon sustained pheromone exposure. We developed a model of the regulatory network that captured both characteristics of the mating response. We fit this model to experimental data with an evolutionary algorithm and used the parameterized model to predict scenarios for which it was not trained, including different temporal stimulus profiles and genetic perturbations to pathway components. Our model allowed us to establish the role of four architectural elements of the network in regulating gene expression. These network motifs are incoherent feedforward, positive feedback, negative feedback, and repressor binding. Experimental and computational perturbations to these network motifs established a specific role for each in coordinating the mating response to persistent and dynamic stimulation.


Assuntos
Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Expressão Gênica , Regulação Fúngica da Expressão Gênica , Feromônios , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
2.
Nat Biomed Eng ; 2(10): 761-772, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30854249

RESUMO

The risk stratification of prostate cancer and breast cancer tumours from patients relies on histopathology, selective genomic testing, or on other methods employing fixed formalin tissue samples. However, static biomarker measurements from bulk fixed-tissue samples provide limited accuracy and actionability. Here, we report the development of a live-primary-cell phenotypic-biomarker assay with single-cell resolution, and its validation with prostate cancer and breast cancer tissue samples for the prediction of post-surgical adverse pathology. The assay includes a collagen-I/fibronectin extracellular-matrix formulation, dynamic live-cell biomarkers, a microfluidic device, machine-vision analysis and machine-learning algorithms, and generates predictive scores of adverse pathology at the time of surgery. Predictive scores for the risk stratification of 59 prostate cancer patients and 47 breast cancer patients, with values for area under the curve in receiver-operating-characteristic curves surpassing 80%, support the validation of the assay and its potential clinical applicability for the risk stratification of cancer patients.

3.
Mol Biol Cell ; 26(22): 4124-34, 2015 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-26310439

RESUMO

G protein-coupled receptor (GPCR) signaling is fundamental to physiological processes such as vision, the immune response, and wound healing. In the budding yeast Saccharomyces cerevisiae, GPCRs detect and respond to gradients of pheromone during mating. After pheromone stimulation, the GPCR Ste2 is removed from the cell membrane, and new receptors are delivered to the growing edge. The regulator of G protein signaling (RGS) protein Sst2 acts by accelerating GTP hydrolysis and facilitating pathway desensitization. Sst2 is also known to interact with the receptor Ste2. Here we show that Sst2 is required for proper receptor recovery at the growing edge of pheromone-stimulated cells. Mathematical modeling suggested pheromone-induced synthesis of Sst2 together with its interaction with the receptor function to reestablish a receptor pool at the site of polarized growth. To validate the model, we used targeted genetic perturbations to selectively disrupt key properties of Sst2 and its induction by pheromone. Together our results reveal that a regulator of G protein signaling can also regulate the G protein-coupled receptor. Whereas Sst2 negatively regulates G protein signaling, it acts in a positive manner to promote receptor retention at the growing edge.


Assuntos
Reguladores de Proteínas de Ligação ao GTP/metabolismo , Proteínas Ativadoras de GTPase/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Sequência de Aminoácidos , Endocitose , Modelos Biológicos , Feromônios/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Transdução de Sinais , Fatores de Transcrição/metabolismo
4.
Mol Biol Cell ; 26(18): 3359-71, 2015 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-26179917

RESUMO

Protein kinases regulate a broad array of cellular processes and do so through the phosphorylation of one or more sites within a given substrate. Many protein kinases are themselves regulated through multisite phosphorylation, and the addition or removal of phosphates can occur in a sequential (processive) or a stepwise (distributive) manner. Here we measured the relative abundance of the monophosphorylated and dual-phosphorylated forms of Fus3, a member of the mitogen-activated protein kinase (MAPK) family in yeast. We found that upon activation with pheromone, a substantial proportion of Fus3 accumulates in the monophosphorylated state. Introduction of an additional copy of Fus3 lacking either phosphorylation site leads to dampened signaling. Conversely, cells lacking the dual-specificity phosphatase (msg5Δ) or that are deficient in docking to the MAPK-scaffold (Ste5(ND)) accumulate a greater proportion of dual-phosphorylated Fus3. The double mutant exhibits a synergistic, or "synthetic," supersensitivity to pheromone. Finally, we present a predictive computational model that combines MAPK scaffold and phosphatase activities and is sufficient to account for the observed MAPK profiles. These results indicate that the monophosphorylated and dual-phosphorylated forms of the MAPK act in opposition to one another. Moreover, they reveal a new mechanism by which the MAPK scaffold acts dynamically to regulate signaling.


Assuntos
Sistema de Sinalização das MAP Quinases , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Fosfatases de Especificidade Dupla/metabolismo , Modelos Biológicos , Feromônios/metabolismo , Fosforilação , Saccharomyces cerevisiae/enzimologia , Saccharomyces cerevisiae/metabolismo
5.
Curr Biol ; 25(3): 275-285, 2015 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-25601550

RESUMO

BACKGROUND: Septins are well known to form a boundary between mother and daughter cells in mitosis, but their role in other morphogenic states is poorly understood. RESULTS: Using microfluidics and live-cell microscopy, coupled with new computational methods for image analysis, we investigated septin function during pheromone-dependent chemotropic growth in yeast. We show that septins colocalize with the regulator of G protein signaling (RGS) Sst2, a GTPase-activating protein that dampens pheromone receptor signaling. We show further that the septin structure surrounds the polar cap, ensuring that cell growth is directed toward the source of pheromone. When RGS activity is abrogated, septins are partially disorganized. Under these circumstances, the polar cap travels toward septin structures and away from sites of exocytosis, resulting in a loss of gradient tracking. CONCLUSIONS: Septin organization is dependent on RGS protein activity. When assembled correctly, septins promote turning of the polar cap and proper tracking of a pheromone gradient.


Assuntos
Polaridade Celular/fisiologia , Proteínas RGS/metabolismo , Saccharomyces cerevisiae/crescimento & desenvolvimento , Saccharomyces cerevisiae/metabolismo , Septinas/metabolismo , Tropismo/fisiologia , Proteínas Ativadoras de GTPase/metabolismo , Processamento de Imagem Assistida por Computador , Técnicas Analíticas Microfluídicas , Modelos Biológicos , Receptores de Feromônios/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Análise de Célula Única
6.
Mol Cell ; 55(1): 85-96, 2014 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-24954905

RESUMO

G proteins and their associated receptors process information from a variety of environmental stimuli to induce appropriate cellular responses. Generally speaking, each cell in a population responds within defined limits, despite large variation in the expression of protein signaling components. Therefore, we postulated that noise suppression is encoded within the signaling system. Using the yeast mating pathway as a model, we evaluated the ability of a regulator of G protein signaling (RGS) protein to suppress noise. We found that the RGS protein Sst2 limits variability in transcription and morphogenesis in response to pheromone stimulation. While signal suppression is a result of both the GAP (GTPase accelerating) and receptor binding functions of Sst2, noise suppression requires only the GAP activity. Taken together, our findings reveal a hitherto overlooked role of RGS proteins as noise suppressors and demonstrate an ability to uncouple signal and noise in a prototypical stimulus-response pathway.


Assuntos
Proteínas de Ligação ao GTP/metabolismo , Proteínas Ativadoras de GTPase/fisiologia , Proteínas de Saccharomyces cerevisiae/fisiologia , Polaridade Celular , Feromônios/metabolismo , Transdução de Sinais , Transcrição Gênica , Proteína cdc42 de Saccharomyces cerevisiae de Ligação ao GTP/metabolismo
7.
J Biol Chem ; 289(21): 15052-63, 2014 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-24722989

RESUMO

Heterotrimeric G proteins are well known to transmit signals from cell surface receptors to intracellular effector proteins. There is growing appreciation that G proteins are also present at endomembrane compartments, where they can potentially interact with a distinct set of signaling proteins. Here, we examine the cellular trafficking function of the G protein α subunit in yeast, Gpa1. Gpa1 contains a unique 109-amino acid insert within the α-helical domain that undergoes a variety of posttranslational modifications. Among these is monoubiquitination, catalyzed by the NEDD4 family ubiquitin ligase Rsp5. Using a newly optimized method for G protein purification together with biophysical measures of structure and function, we show that the ubiquitination domain does not influence enzyme activity. By screening a panel of 39 gene deletion mutants, each lacking a different ubiquitin binding domain protein, we identify seven that are necessary to deliver Gpa1 to the vacuole compartment including four proteins (Ede1, Bul1, Ddi1, and Rup1) previously not known to be involved in this process. Finally, we show that proper endocytosis of the G protein is needed for sustained cellular morphogenesis and mating in response to pheromone stimulation. We conclude that a cascade of ubiquitin-binding proteins serves to deliver the G protein to its final destination within the cell. In this instance and in contrast to the previously characterized visual system, endocytosis from the plasma membrane is needed for proper signal transduction rather than for signal desensitization.


Assuntos
Proteínas de Transporte/metabolismo , Endocitose , Subunidades alfa Gq-G11 de Proteínas de Ligação ao GTP/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Ubiquitina/metabolismo , Trifosfato de Adenosina/metabolismo , Sequência de Aminoácidos , Proteínas de Transporte/genética , Cruzamentos Genéticos , Subunidades alfa Gq-G11 de Proteínas de Ligação ao GTP/química , Subunidades alfa Gq-G11 de Proteínas de Ligação ao GTP/genética , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Immunoblotting , Microscopia Confocal , Modelos Moleculares , Dados de Sequência Molecular , Morfogênese , Mutação , Ligação Proteica , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crescimento & desenvolvimento , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Homologia de Sequência de Aminoácidos , Imagem com Lapso de Tempo , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo
8.
Sci Signal ; 6(291): ra78, 2013 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-24003255

RESUMO

Extracellular signals, such as nutrients and hormones, cue intracellular pathways to produce adaptive responses. Often, cells must coordinate their responses to multiple signals to produce an appropriate outcome. We showed that components of a glucose-sensing pathway acted on components of a heterotrimeric guanine nucleotide-binding protein (G protein)-mediated pheromone signaling pathway in the yeast Saccharomyces cerevisiae. We demonstrated that the G protein α subunit Gpa1 was phosphorylated in response to conditions of reduced glucose availability and that this phosphorylation event contributed to reduced pheromone-dependent stimulation of mitogen-activated protein kinases, gene transcription, cell morphogenesis, and mating efficiency. We found that Elm1, Sak1, and Tos3, the kinases that phosphorylate Snf1, the yeast homolog of adenosine monophosphate-activated protein kinase (AMPK), in response to limited glucose availability, also phosphorylated Gpa1 and contributed to the diminished mating response. Reg1, the regulatory subunit of the phosphatase PP1 that acts on Snf1, was likewise required to reverse the phosphorylation of Gpa1 and to maintain the mating response. Thus, the same kinases and phosphatase that regulate Snf1 also regulate Gpa1. More broadly, these results indicate that the pheromone signaling and glucose-sensing pathways communicate directly to coordinate cell behavior.


Assuntos
Subunidades alfa Gq-G11 de Proteínas de Ligação ao GTP/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/enzimologia , Transdução de Sinais/fisiologia , Ativação Enzimática/fisiologia , Subunidades alfa Gq-G11 de Proteínas de Ligação ao GTP/genética , Feromônios/genética , Feromônios/metabolismo , Fosforilação/fisiologia , Proteínas Quinases/genética , Proteínas Quinases/metabolismo , Proteína Fosfatase 1/genética , Proteína Fosfatase 1/metabolismo , Proteínas Serina-Treonina Quinases/genética , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA