Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Nat Rev Mol Cell Biol ; 24(7): 454-476, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-36765164

RESUMO

To coordinate, adapt and respond to biological signals, cells convey specific messages to other cells. An important aspect of cell-cell communication involves secretion of molecules into the extracellular space. How these molecules are selected for secretion has been a fundamental question in the membrane trafficking field for decades. Recently, extracellular vesicles (EVs) have been recognized as key players in intercellular communication, carrying not only membrane proteins and lipids but also RNAs, cytosolic proteins and other signalling molecules to recipient cells. To communicate the right message, it is essential to sort cargoes into EVs in a regulated and context-specific manner. In recent years, a wealth of lipidomic, proteomic and RNA sequencing studies have revealed that EV cargo composition differs depending upon the donor cell type, metabolic cues and disease states. Analyses of distinct cargo 'fingerprints' have uncovered mechanistic linkages between the activation of specific molecular pathways and cargo sorting. In addition, cell biology studies are beginning to reveal novel biogenesis mechanisms regulated by cellular context. Here, we review context-specific mechanisms of EV biogenesis and cargo sorting, focusing on how cell signalling and cell state influence which cellular components are ultimately targeted to EVs.


Assuntos
Vesículas Extracelulares , Proteômica , Transporte Biológico , Vesículas Extracelulares/metabolismo , Transporte Proteico , Transdução de Sinais , Comunicação Celular
2.
PLoS Pathog ; 17(9): e1009884, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34506615

RESUMO

Vulvovaginal candidiasis (VVC), caused primarily by the human fungal pathogen Candida albicans, results in significant quality-of-life issues for women worldwide. Candidalysin, a toxin derived from a polypeptide (Ece1p) encoded by the ECE1 gene, plays a crucial role in driving immunopathology at the vaginal mucosa. This study aimed to determine if expression and/or processing of Ece1p differs across C. albicans isolates and whether this partly underlies differential pathogenicity observed clinically. Using a targeted sequencing approach, we determined that isolate 529L harbors a similarly expressed, yet distinct Ece1p isoform variant that encodes for a predicted functional candidalysin; this isoform was conserved amongst a collection of clinical isolates. Expression of the ECE1 open reading frame (ORF) from 529L in an SC5314-derived ece1Δ/Δ strain resulted in significantly reduced vaginopathogenicity as compared to an isogenic control expressing a wild-type (WT) ECE1 allele. However, in vitro challenge of vaginal epithelial cells with synthetic candidalysin demonstrated similar toxigenic activity amongst SC5314 and 529L isoforms. Creation of an isogenic panel of chimeric strains harboring swapped Ece1p peptides or HiBiT tags revealed reduced secretion with the ORF from 529L that was associated with reduced virulence. A genetic survey of 78 clinical isolates demonstrated a conserved pattern between Ece1p P2 and P3 sequences, suggesting that substrate specificity around Kex2p-mediated KR cleavage sites involved in protein processing may contribute to differential pathogenicity amongst clinical isolates. Therefore, we present a new mechanism for attenuation of C. albicans virulence at the ECE1 locus.


Assuntos
Candida albicans/genética , Candidíase Vulvovaginal/microbiologia , Proteínas Fúngicas/genética , Alelos , Animais , Candida albicans/patogenicidade , Feminino , Variação Genética , Humanos , Camundongos , Virulência
3.
Biophys J ; 117(4): 659-667, 2019 08 20.
Artigo em Inglês | MEDLINE | ID: mdl-31400916

RESUMO

The acidity-triggered rational membrane (ATRAM) peptide was designed to target acidic diseases such as cancer. An acidic extracellular medium, such as that found in aggressive tumors, drives the protonation of the glutamic acids in ATRAM, leading to the membrane translocation of its C-terminus and the formation of a transmembrane helix. Compared to healthy cells, cancerous cells often increase exposure of the negatively charged phosphatidylserine (PS) on the outer leaflet of the plasma membrane. Here we use a reconstituted vesicle system to explore how PS influences the interaction of ATRAM with membranes. To explore this, we used two new variants of ATRAM, termed K2-ATRAM and Y-ATRAM, with small modifications at the noninserting N-terminus. We observed that the effect of PS on the membrane insertion pK and lipid partitioning hinged on the sequence of the noninserting end. Our data additionally indicate that the effect of PS on the insertion pK does not merely depend on electrostatics, but it is multifactorial. Here we show how small sequence changes can impact the interaction of a peptide with membranes of mixed lipid composition. These data illustrate how model studies using neutral bilayers, which do not mimic the negative charge found in the plasma membrane of cancer cells, may fail to capture important aspects of the interaction of anticancer peptides with tumor cells. This information can guide the design of therapeutic peptides that target the acidic environments of different diseased tissues.


Assuntos
Lipossomos/química , Proteínas de Membrana/química , Peptídeos/química , Fosfatidilserinas/química , Motivos de Aminoácidos , Membrana Celular/química , Concentração de Íons de Hidrogênio , Interações Hidrofóbicas e Hidrofílicas , Eletricidade Estática
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA