Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
1.
Med Trop Sante Int ; 3(3)2023 09 30.
Artigo em Francês | MEDLINE | ID: mdl-38094479

RESUMO

Background & rationale: Malaria is a major health problem in Benin where it is the main cause of morbidity and mortality, particularly among children under 5 and pregnant women. Although the vast majority of malaria cases occurs in rural and agricultural areas and are often associated with development projects, very few interventions target the agro-ecosystem. In Benin, irrigated rice growing is expanding to meet the increasing demand of the population. However, continuous flooding and tillage systems induce the development and proliferation of malaria and other diseases vectors. Intermittent flooding of rice plots and minimal tillage can reduce significantly the proliferation of mosquitoes including Anopheles in rice fields. However, the dissemination and implementation of these agricultural practices require community-wide action for greater effectiveness. As part of strengthening the capacity of farming communities in the fight against malaria vectors, the "Farmer Field School" appears to be an innovative approach. This learning by doing method promotes interactions between groups of producers to disseminate proven technologies. This study aims to disseminate among rice producers the agricultural practices of intermittent flooding and minimal tillage, likely to reduce the proliferation of malaria vectors in the rice fields. Materials & methods: This study was carried out in the rice-growing perimeter of Malanville, Benin (11° 52' 5" North, 3° 22' 59" East) which covers an area of 516 hectares. Farmer Field Schools were set up after a basic survey at producer level. This survey was carried out through in-depth interview, focus group discussions and direct field observation with producers. Focus groups discussions and interviews made it possible to understand the perception of rice farmers on the link between rice production and the transmission of malaria. In order to disseminate new agricultural practices such as intermittent flooding and minimal tillage among producers, twelve plots have been set up. Farmer Field Schools were monitored weekly with rice producers accompanied by a facilitator and a medical entomologist (learning facilitator or moderator) helping the farmers with the collection and identification of mosquito larvae. According to the different stages of rice development (transplanting, tillering, maturation), the mosquito larvae were collected in the test and control plots from 10 a.m. to 2 p.m. by the dipping method. Then the water in the test compartments (intermittent flooding) was emptied. A cycle of 7 days of flooding and 2 days of drying was carried out for intermittent flooding. Mosquito larvae were identified morphologically using the identification key and Anopheles genus larvae were isolated in plastic cups. The impacts of intermittent flooding and minimum tillage in reducing breeding sites and larval densities were established by determining and comparing the larval densities of mosquitoes and of Anopheles between the test and control plots. Results: Direct observations in the field allowed to identify three tillage systems, which include the use of tiller (28%), plow (66%) and hoe (6%) on the rice field. Continuous flooding was the only irrigation system used by farmers. The water used for irrigation comes either from boreholes installed individually or from the Niger River. The volume of water used varies with the seasons, the size of the farms and the variety of rice grown. Farmers observe that the nuisance of mosquitoes increases during the rice production period with an outbreak of malaria cases, especially among children, which leads to crowds in health centers. The preventive measures against malaria among farmers are the use of impregnated mosquito nets distributed free of charge by the national program against malaria, and of insecticide bombs or spirals. Considering the development stages of the rice, the larval densities varied according to the treatments. Overall, minimal tillage applied to intermittent flooding significantly reduced the density of mosquito larvae of all species. The reduction rates were 10.5, 5.4 and 2.5 during transplanting, tillering and maturation, respectively. Considering only the Anopheles larvae, minimal tillage applied to intermittent flooding reduced their density by 16, 5.5 and 4 respectively during transplanting, tillering and maturation. Discussion/conclusion: The rice-growing area of Malanville has many favorable conditions for rice production, including the presence of water supply sources such as the Niger River located near the rice field and numerous boreholes. The availability of water pockets for mosquito breeding during irrigation appeared to contribute to the extension of malaria transmission. The present study showed that the intermittent flooding coupled with minimal tillage could reduce the proliferation of malaria vectors. The results suggested that with technical support to farmers through the "Farmer Field School", the malaria incidence could be reduced in the farming community.


Assuntos
Anopheles , Malária , Oryza , Gravidez , Animais , Criança , Humanos , Feminino , Malária/epidemiologia , Ecossistema , Fazendeiros , Benin/epidemiologia , Mosquitos Vetores , Larva , Instituições Acadêmicas , Água
2.
J Ethnobiol Ethnomed ; 19(1): 54, 2023 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-37993955

RESUMO

BACKGROUND: Edible insects are important sources of essential nutrients and have the potential to contribute to malnutrition reduction and food security in the Republic of Benin. However, their consumption is always restricted to a limited number of sociocultural groups. To determine how the consumption of insects could be promoted as an alternative food source, this study documents the endogenous knowledge associated with edible insects and, the main factors that govern their perception and frequency consumption. METHODS: A survey was conducted towards 479 rural households consuming edible insects through 91 villages of Atacora, Alibori, Zou, and Plateau departments using individual interviews with a semi-structured questionnaire. The survey was focused on the inventory of edible insects and the documentation of consumers' acceptance, frequencies and motive reason of consumption, local uses, and accessibility to edible insects. Samples of edible insects were collected and preserved in 70% alcohol for taxonomic identification. RESULTS: The majority of surveyed people (79.1%) were consumers of edible insects since many years ago (29.1 ± 17.2 years). Insect species belonging to 17 genera of 7 families and 3 orders of insects were used as food, with Brachytrupes membranaceus Drury being the most widespread and consumed. Six factors affecting edible insect availability were identified with the chemical pollution as the most important. Besides their food use (63.2%), edible insects in the study area were used for several purposes. We find that ethnicity, religion, age, education level, and monthly frequency of insect consumption are the main factors influencing the local perception of edible insects. Indeed ethnic group, religion ethnicity, and market accessibility have a positive influence on edible insect consumption frequency. The Hierarchical Clustering of Principal Components has allowed us to classify the interviewees into 3 groups with different perceptions of entomophagy and their characteristics will make it possible to better orient the strategies for promoting entomophagy in the Republic of Benin. CONCLUSIONS: Religion and tradition are among the main factors that influence entomophagy in Benin Republic. The development of a national strategy to promote entomophagy should take into account the recorded insect consumption motivations, and their different uses by each ethnic group, and mainly target young people.


Assuntos
Insetos Comestíveis , Animais , Humanos , Adolescente , Benin , Insetos , Alimentos , Percepção
3.
Malar J ; 22(1): 228, 2023 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-37542257

RESUMO

BACKGROUND: The COVID-19 pandemic and its damages have severely impacted the global healthcare system even in countries with the best systems. In sub-Saharan Africa (SSA), it could worsen the malaria situation in endemic countries such as Benin. This study was conducted to describe the potential effects of the pandemic on urban dwellers attitudes, prevention and treatment against malaria in four major cities of Benin. METHODS: A cross-sectional questionnaire survey was conducted in Cotonou, Bohicon, Parakou and Natitingou, four urban cities of Benin. A total of 800 randomly selected households were interviewed. The questionnaire consisted of four parts: sociodemographic characteristics, knowledge, attitude, and practice. Descriptive statistics and binomial logistic regression analysis were used in the statistical analysis. RESULTS: More than 90% of the participants interviewed had a good level of knowledge about the transmission and prevention of malaria in the cities surveyed. In contrast, low proportions of participants reported visiting health-care facilities when they suspected malaria. Compared to the proportions observed at Parakou and Natitingou, the low proportion of participants was statistically significant at Cotonou (Parakou: X2 = 31.345, df = 1, P < 0.0001; Natitingou: X2 = 17.471, df = 1, P < 0.0001). Among the reasons for not seeking care, these related to COVID-19 were the most mentioned. Moreover, the good education level of the participants was one of the factors associated with the non-use of healthcare facilities due to over-knowledgeable about Covid-19, which might have increased the fear to go to the health facilities. Finally, high proportions of self-medication practice were mentioned with high use of malaria drugs to treat both malaria and to protect against COVID-19. CONCLUSIONS: The data show a negative impact of COVID-19 on visits to healthcare facilities for malarial treatment and malaria drugs usage by the population. It is, therefore, necessary to rebuild malaria programmes by integrating measures adapted to health crises such as the COVID-19 pandemic.


Assuntos
COVID-19 , Malária , Humanos , Benin/epidemiologia , Pandemias/prevenção & controle , Estudos Transversais , COVID-19/epidemiologia , COVID-19/prevenção & controle , Malária/epidemiologia , Malária/prevenção & controle , África Ocidental , Atitude , Conhecimentos, Atitudes e Prática em Saúde
4.
Parasit Vectors ; 15(1): 207, 2022 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-35698161

RESUMO

BACKGROUND: The implementation of anti-larval strategies in the fight against malaria vectors requires fundamental knowledge of their oviposition sites. The aim of this study was to assess the spatial and temporal distribution of Anopheles breeding sites as well as the influence of abiotic and biotic factors on the proliferation of larvae in urban and non-urban areas of Benin. METHODS: Sampling of Anopheles larvae was carried out during the rainy and dry seasons in urbanized and non-urbanized areas of the cities of Cotonou, Bohicon, Parakou, and Natitingou in Benin. The Anopheles larval breeding sites were georeferenced and characterized by their nature, type, physicochemical (pH, temperature, dissolved oxygen, conductivity, turbidity, salinity) and biological attributes (larval density and coliform density). RESULTS: A total of 198 positive breeding sites for Anopheles larvae were identified, comprising 163 (82.3%) in the rainy season and 35 (17.7%) in the dry season. Out of these larval habitats, 61.9% were located in urbanized areas, and were predominantly puddles. Principal component analysis revealed a high positive correlation of larval density with temperature and dissolved oxygen, and with salinity in the coastal zone. In addition, cross-sectional analysis of the microbiological results with larval density showed a significant negative correlation between larval productivity and faecal coliform load. CONCLUSIONS: This study indicated the presence of multiple larval habitats of Anopheles in the urban areas which were created through human activities, and associations between larval density and intrinsic factors of the habitats such as temperature, dissolved oxygen and faecal coliform load. This type of information may be useful for the implementation of appropriate control strategies in urban areas, including regulation of the human activities that lead to the creation of breeding sites, proper environmental management and targeted larvicidal use.


Assuntos
Anopheles , Animais , Anopheles/fisiologia , Benin , Estudos Transversais , Ecossistema , Feminino , Humanos , Larva/fisiologia , Mosquitos Vetores , Oxigênio
5.
Malar J ; 19(1): 333, 2020 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-32928223

RESUMO

BACKGROUND: Irrigation systems have been identified as one of the factors promoting malaria disease around agricultural farms in sub-Saharan Africa. However, if improved water management strategy is adopted during rice cultivation, it may help to reduce malaria cases among human population living around rice fields. This study aimed to assess the impact of the different irrigation practices on malaria transmission, as well as to evaluate the water management system that will best mitigate malaria transmission in Malanville, Benin. METHODS: Knowledge, Attitude and Practice (KAP) study was conducted on 104 households staying on and around the rice fields in Malanville. The study focused on the frequency of mosquito bites and preventive measures against malaria as well as soil preparation and rice planting methods. Mosquito larvae density was assessed in different water management system: continuous flooding (CF) or intermittent flooding (IF), deep tillage (DT) or minimal tillage (MT) and normal levelling (NL) or abnormal levelling (AL) in an experimental hut set-up. Larvae were collected using dipping methods and their density was determined. RESULTS: Three tillage systems, which include the use of tiller, plow and hoe, were identified on the rice field. Continuous flooding was the only irrigation system used by farmers. Retrospective data from Malanville Health Centre revealed higher malaria cases during rice production season, which was also confirmed by field participants. The density of Anopheles larvae was reduced by 80.8%, 30.8% and 40.7% (P = 0.000) during transplanting, tillering and maturation periods, respectively with intermittent flooding compared to continuous flooding. In addition, a clear reduction of larva density was observed with both intermittent flooding systems applied to minimal tillage (MT + IF + NL) and intermittent flooding applied to deep tillage (DT + IF + AL), showing that intermittent flooding could reduce the abundance of malaria vector in rice fields. CONCLUSION: Recommending intermittent flooding technology for rice cultivation may not only be useful for water management but could also be an intentional strategy to control mosquitoes vector-borne diseases around rice farms.


Assuntos
Agricultura/métodos , Anopheles/fisiologia , Malária/prevenção & controle , Controle de Mosquitos/métodos , Mosquitos Vetores/fisiologia , Agricultura/classificação , Animais , Anopheles/crescimento & desenvolvimento , Benin , Larva/crescimento & desenvolvimento , Larva/fisiologia , Mosquitos Vetores/crescimento & desenvolvimento , Oryza/crescimento & desenvolvimento , Controle da População/métodos , Estudos Retrospectivos
6.
Parasit Vectors ; 13(1): 423, 2020 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-32811561

RESUMO

BACKGROUND: Understanding the mechanisms used by Anopheles mosquitoes to survive insecticide exposure is key to manage existing insecticide resistance and develop more suitable insecticide-based malaria vector control interventions as well as other alternative integrated tools. To this regard, the molecular basis of permethrin, DDT and dieldrin resistance in Anopheles funestus (sensu stricto) at Akaka-Remo was investigated. METHODS: Bioassays were conducted on 3-5-day-old adult An. funestus (s.s.) mosquitoes for permethrin, DDT and dieldrin susceptibility test. The molecular mechanisms of mosquito resistance to these insecticides were investigated using microarray and reverse transcriptase PCR techniques. The voltage-gated sodium channel region of mosquitoes was also screened for the presence of knockdown resistance mutations (kdr west and east) by sequencing method. RESULTS: Anopheles funestus (s.s.) population was resistant to permethrin (mortality rate of 68%), DDT (mortality rate of 10%) and dieldrin (mortality rate of 8%) insecticides. Microarray and RT-PCR analyses revealed the overexpression of glutathione S-transferase genes, cytochrome P450s, esterase, trypsin and cuticle proteins in resistant mosquitoes compared to control. The GSTe2 was the most upregulated detoxification gene in permethrin-resistant (FC = 44.89), DDT-resistant (FC = 57.39) and dieldrin-resistant (FC = 41.10) mosquitoes compared to control population (FC = 22.34). The cytochrome P450 gene, CYP6P9b was also upregulated in both permethrin- and DDT-resistant mosquitoes. The digestive enzyme, trypsin (hydrolytic processes) and the cuticle proteins (inducing cuticle thickening leading to reduced insecticides penetration) also showed high involvement in insecticide resistance, through their overexpression in resistant mosquitoes compared to control. The kdr east and west were absent in all mosquitoes analysed, suggesting their non-involvement in the observed mosquito resistance. CONCLUSIONS: The upregulation of metabolic genes, especially the GSTe2 and trypsin, as well as the cuticle proteins is driving insecticide resistance of An. funestus (s.s.) population. However, additional molecular analyses, including functional metabolic assays of these genes as well as screening for a possible higher cuticular hydrocarbon and lipid contents, and increased procuticle thickness in resistant mosquitoes are needed to further describe their distinct roles in mosquito resistance.


Assuntos
Anopheles , Resistência a Inseticidas/genética , Inseticidas/farmacologia , Animais , Anopheles/efeitos dos fármacos , Anopheles/genética , Anopheles/metabolismo , Bioensaio , Sistema Enzimático do Citocromo P-450/metabolismo , DDT/farmacologia , Dieldrin/farmacologia , Vetores de Doenças , Esterases/metabolismo , Regulação da Expressão Gênica , Genes de Insetos , Glutationa Transferase/metabolismo , Proteínas de Insetos/metabolismo , Malária/transmissão , Mosquitos Vetores/efeitos dos fármacos , Mosquitos Vetores/genética , Mosquitos Vetores/metabolismo , Nigéria , Análise de Sequência com Séries de Oligonucleotídeos , Permetrina/farmacologia , Tripsina/genética , Canais de Sódio Disparados por Voltagem/genética , Canais de Sódio Disparados por Voltagem/metabolismo
7.
J Med Entomol ; 57(4): 1168-1175, 2020 07 04.
Artigo em Inglês | MEDLINE | ID: mdl-32112104

RESUMO

Vector control strategies recommended by the World Health Organization are threatened by resistance of Anopheles mosquitoes to insecticides. Information on the distribution of resistant genotypes of malaria vectors is increasingly needed to address the problem. Ten years of published and unpublished data on malaria vector susceptibility/resistance and resistance genes have been collected across Togo. Relationships between the spatial distribution of resistance status and environmental, socio-economic, and landscape features were tested using randomization tests, and calculating Spearman rank and Pearson correlation coefficients between mosquito mortality and different gridded values. Anopheles gambiae sensu lato was resistant to DDT, pyrethroids, and the majority of carbamates and organophosphates. Three sibling species were found (i.e., An. gambiae, Anopheles coluzzii, and Anopheles arabiensis) with four resistance genes, including kdr (L1014F, L1014S, and N1575Y) and ace1 (G119S). The most frequent resistance gene was L1014F. Overall, no association was found between the susceptibility/resistance status and environmental features, suggesting that evolution of resistance may be most closely related to extreme selection from local insecticide use. Nevertheless, further research is necessary for firm conclusions about this lack of association, and the potential role of landscape characteristics such as presence of crops and percentage of tree cover.


Assuntos
Anopheles/genética , Meio Ambiente , Resistência a Inseticidas/genética , Fatores Socioeconômicos , Animais , Anopheles/classificação , Anopheles/efeitos dos fármacos , Inseticidas/farmacologia , Especificidade da Espécie , Togo
8.
Artigo em Inglês | MEDLINE | ID: mdl-31142024

RESUMO

Helicoverpa armigera is an indigenous species in Africa and has been reported in the destruction of several crops in Benin. Management of H. armigera pest is mainly focused on the use of synthetic pyrethroids, which may contribute to resistance selection. This study aimed to screen the susceptibility pattern of field populations of H. armigera to deltamethrin in Benin. Relevant information on the type of pesticides used by farmers were gathered through surveys. Collected samples of Helicoverpa (F0) were reared to F1. F0 were subjected to morphological speciation followed by a confirmation using restriction fragment length polymorphism coupled with a polymerase chain reaction (RFLP-PCR). F1 (larvae) were used for insecticide susceptibility with deltamethrin alone and in the presence of the P450 inhibitor Piperonyl Butoxide (PBO). Deltamethrin and lambda-cyhalothrin were the most used pyrethroids in tomato and cotton farms respectively. All field-sampled Helicoverpa were found to be H. armigera. Susceptibility assays of H. armigera to deltamethrin revealed a high resistance pattern in cowpea (resistance factor (RF) = 2340), cotton (RF varying from 12 to 516) and tomato (RF=85) farms which is a concern for the control of this major polyphagous agricultural pest. There was a significant increase of mortality when deltamethrin insecticide was combined with piperonyl butoxide (PBO), suggesting the possible involvement of detoxification enzymes such as oxidase. This study highlights the presence of P450 induced metabolic resistance in H. armigera populations from diverse cropping systems in Benin. The recorded high levels of deltamethrin resistance in H. armigera is a concern for the control of this major agricultural pest in Benin as the country is currently embarking into economical expansion of cotton, vegetables and grain-legumes cropping systems.


Assuntos
Distribuição Animal , Resistência a Inseticidas , Inseticidas/farmacologia , Mariposas/efeitos dos fármacos , Nitrilas/farmacologia , Piretrinas/farmacologia , Animais , Benin , Larva/efeitos dos fármacos
9.
Wellcome Open Res ; 3: 71, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30175242

RESUMO

Background: Insecticides resistance in Anopheles mosquitoes limits Long-Lasting Insecticidal Nets (LLIN) used for malaria control in Africa, especially Benin. This study aimed to evaluate the bio-efficacy of current LLINs in an area where An. funestuss.l. and An. gambiae have developed multi-resistance to insecticides, and to assess in experimental huts the performance of a mixed combination of pyrethroids and piperonyl butoxide (PBO) treated nets on these resistant mosquitoes. Methods: The study was conducted at Kpomè, Southern Benin. The bio-efficacy of LLINs against An. funestus and An. gambiae was assessed using the World Health Organization (WHO) cone and tunnel tests. A released/recapture experiment following WHO procedures was conducted to compare the efficacy of conventional LLINs treated with pyrethroids only and LLINs with combinations of pyrethroids and PBO. Prior to huts trials, we confirmed the level of insecticide and PBO residues in tested nets using high performance liquid chromatography (HPLC). Results: Conventional LLINs (Type 2 and Type 4) have the lowest effect against local multi-resistant An. funestus s.s. and An. coluzzii populations from Kpomè. Conversely, when LLINs containing mixtures of pyrethroids and PBO (Type 1 and Type 3) were introduced in trial huts, we recorded a greater effect against the two mosquito populations (P < 0.0001). Tunnel test with An. funestus s.s. revealed mortalities of over 80% with this new generation of LLINs (Type 1 and Type 3),while conventional LLINs produced 65.53 ± 8.33% mortalities for Type 2 and 71.25 ±7.92% mortalities for Type 4. Similarly, mortalities ranging from 77 to 87% were recorded with the local populations of An. coluzzii. Conclusion: This study suggests the reduced efficacy of conventional LLINs (Pyrethroids alone) currently distributed in Benin communities where Anopheles populations have developed multi-insecticide resistance. The new generation nets (pyrethroids+PBO) proved to be more effective on multi-resistant populations of mosquitoes.

10.
PLoS Negl Trop Dis ; 12(7): e0006572, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29965961

RESUMO

BACKGROUND: The environmental pathogen, Mycobacterium ulcerans (MU) can infect both humans and animals and cause Buruli ulcer (BU) disease. However, its mode(s) of transmission from the colonized environment to human/animal hosts remain unclear. In Australia, MU can infect both wildlife and domestic mammals. Till date, BU-like lesions have only been reported in wildlife in Africa. This warrants a thorough assessment of possible MU in domestic animals in Africa. Here, we screened roaming domesticated animals that share the human microhabitat in two different BU endemic sites, Sedje-Denou in Benin and Akonolinga in Cameroon, for MU lesions. METHODOLOGY/PRINCIPAL FINDINGS: We screened roaming mammals and birds across 3 endemic villages of Sedje-Denou in Southern Benin and 6 endemic villages of Akonolinga in Cameroon. After approval from relevant authorities, specimens (wound swabs and tissue fragments) were collected from animals with open or active lesion and systematically screened to detect the presence of MU though the diagnostic DNA targets IS2404, IS2606 and KR-B. Out of 397 animals surveyed in Akonolinga, 44 (11.08%) carried skin lesions and all were negative for MU DNA. For Sedje-Denou, only 25 (6.93%) out of 361 animals surveyed carried external skin lesions of which 2 (8%) were positive for MU DNA targets. These MU infected lesions were found in two different villages on a goat (abdominal part) and on a dog (nape area of the neck). Source-tracking of MU isolates within infected animal lesions was performed using VNTR genotyping and further confirmed with sequencing. One MU VNTR genotype (Z) was successfully typed from the goat lesion. The evolutionary history inferred from sequenced data revealed a clustering of animal MU isolates within isolates from human lesions. CONCLUSION/SIGNIFICANCE: This study describes the first report of two MU infected lesions in domestic animals in Africa. Their DNA sequence analyses show close relationship to isolates from human cases. It suggests that MU infection should be suspected in domestic hosts and these could play a role in transmission. The findings further support the hypothesis that MU is a ubiquitous environmental pathogen found in endemic areas, and probably involved in a multiple transmission pathway.


Assuntos
Animais Domésticos/microbiologia , Úlcera de Buruli/transmissão , Úlcera de Buruli/veterinária , Mycobacterium ulcerans/isolamento & purificação , Zoonoses/transmissão , Animais , Benin , Úlcera de Buruli/microbiologia , Camarões , Galinhas , Doenças do Cão/microbiologia , Cães , Patos , Feminino , Genótipo , Doenças das Cabras/microbiologia , Cabras , Humanos , Masculino , Mycobacterium ulcerans/classificação , Mycobacterium ulcerans/genética , Mycobacterium ulcerans/fisiologia , Filogenia , Doenças das Aves Domésticas/microbiologia , Ovinos , Doenças dos Ovinos/microbiologia , Zoonoses/microbiologia
11.
Wellcome Open Res ; 3: 30, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29707654

RESUMO

Background: To optimize the success of insecticide-based malaria control intervention, knowledge of the distribution of Anopheles gambiae species and insecticide resistance mechanisms is necessary. This paper reported an updated data on pyrethroids/DDT resistance in the An. gambiae s.l population from Togo.  Methods: From December 2013 to April 2015, females of indoor-resting An. gambiae s.l were captured in three locations belonging to three different ecological zones. Resistance to DDT, permethrin and deltamethrin was screened in F1 progeny of collected mosquitoes using WHO susceptibility tests. The identification of species of An. gambiae complex and the detection of kdr and ace.1 R allele were carried out using DNA-based molecular techniques. Results:An. gambiae from Kovié and Nangbéto were highly resistant to DDT and permethrin with mortalities rate ranging from 0.83% to 1.58% for DDT and zero to 8.54% for permethrin. Mosquitoes collected in Nangbéto displayed 81.53% mortality with deltamethrin. An. coluzzii and An. gambiae s.s were found in sympatry in Nangbéto and Mango . The allelic frequency of L1014F was high, ranging from 66 to 100% in both An. coluzzii and An. gambiae s.s. For the first time we detected the L1014S allele in both An. coluzzii and An. gambiaes.s. from Togo at the frequency ranging from 5% to 13% in all the sites. The kdr N1575Y was present at various frequencies in both species ranging from 10% to 45%. Both An. gambiae s.s. and An. coluzzii shared the ace1 R mutation in all investigated sites with allelic frequency ranging from 4% to 16%. Conclusion: These results showed that multiple mutations are involved in insecticides resistance in An. gambiae populations from Togo including the kdr L1014F, L1014S, and N1575Y and ace.1 R G119S mutations.

12.
Can J Infect Dis Med Microbiol ; 2017: 1324310, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28932250

RESUMO

BACKGROUND: Buruli ulcer (BU) continues to be a serious public health threat in wet tropical regions and the mode of transmission of its etiological agent, Mycobacterium ulcerans (MU), remains poorly understood. In this study, mosquito species collected in endemic villages in Benin were screened for the presence of MU. In addition, the ability of mosquitoes larvae to pick up MU from their environment and remain colonized through the larval developmental stages to the adult stage was investigated. METHODS: 7,218 adults and larvae mosquitoes were sampled from endemic and nonendemic villages and screened for MU DNA targets (IS2404, IS2606, and KR-B) using qPCR. Results. MU was not detected in any of the field collected samples. Additional studies of artificially infected larvae of Anopheles kisumu with MU strains revealed that mosquitoes larvae are able to ingest and host MU during L1, L2, L3, and L4 developmental stages. However, we noticed an absence of these bacteria at both pupae and adult stages, certainly revealing the low ability of infected or colonized mosquitoes to vertically transmit MU to their offspring. CONCLUSION: The overall findings highlight the low implication of mosquitoes as biological vectors in the transmission cycle of MU from the risk environments to humans.

13.
Wellcome Open Res ; 2: 109, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29387806

RESUMO

Background:  The insecticide susceptibility status of Anopheles funestus, one of the main malaria vectors in the Afrotropical regions, remains under-studied due to the difficulty of working with this mosquito species. Collecting their larvae in natural breeding sites, rearing and maintaining them in normal laboratory conditions have been a difficult task. Forced-egg laying technique has been a very good tool to generate eggs from adult mosquitoes collected from the wild but rearing these eggs to obtain satisfying portion as adults has always been the problem. In this study, we optimized the development of mosquito species larvae under standard laboratory conditions for desired production of adult mosquitoes that can be useful for insecticide susceptibility tests. Methods:  A forced-egg laying technique was used to obtain eggs from gravid female Anopheles funestus collected from Kpome locality in Benin. Eggs were reared in three different water samples (water from the borehole,and two mineral water namely FIFA and Possotômè) and larvae were fed with TetraMin baby fish food. The physico-chemical parameters of the waters were investigated prior to use for egg incubation. Results:In contrast to mineral water that had no contamination, the borehole water source was contaminated with lead (2.5mg/L) and nitrate (118.8mg/L). Egg hatching rates ranged as 91.9 ± 4.4%, 89.1 ± 2.5% and 87.9 ± 2.6% in FIFA, Possotômè and borehole water respectively. High emergence of larvae to adult mosquitoes was recorded as in FIFA (74.3%) and Possotômè(79.5%) water. No adult mosquito was obtained from larvae reared in borehole water. Conclusions: This study gave insight on the water sources that could be good for rearing to mass produce An. funestus in the laboratory. More analysis with other local mineral water sources in our environments could be considered in the future, hopefully giving better outputs.

14.
Parasit Vectors ; 9: 453, 2016 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-27531125

RESUMO

BACKGROUND: Knowledge on the spread and distribution of insecticide resistance in major malaria vectors such as Anopheles funestus is key to implement successful resistance management strategies across Africa. Here, by assessing the susceptibility status of an inland population of An. funestus Giles (Kpome) and investigating molecular basis of resistance, we show that multiple resistance and consistent plasmodium infection rate are present in Anopheles funestus populations from Kpome. METHODS: The insecticide susceptibility level of collected Anopheles funestus was assessed. Synergist (PBO) was used to screen resistance mechanisms. The TaqMan technique was used for genotyping of insecticide resistant alleles and detecting plasmodium infection levels. The nested PCR was used to further assess the plasmodium infection rate. RESULTS: The TaqMan analysis of plasmodial infections revealed an infection rate (18.2 %) of An. funestus in this locality. The WHO bioassays revealed a multiple phenotypic resistance profile for An. funestus in Kpome. This population is highly resistant to pyrethroids (permethrin and deltamethrin), organochlorines (DDT), and carbamates (bendiocarb). A reduced susceptibility was observed with dieldrin. Mortalities did not vary after pre-exposure to PBO for DDT indicating that cytochrome P450s play little role in DDT resistance in Kpome. In contrast, we noticed, a significant increase in mortalities when PBO was combined to permethrin suggesting the direct involvement of P450s in pyrethroid resistance. A high frequency of the L119F-GSTe2 DDT resistance marker was observed in the wild DDT resistant population (9 %RS and 91 %RR) whereas the A296S mutation was detected at a low frequency (1 %RS and 99 %SS). CONCLUSION: The presence of multiple resistance in An. funestus populations in the inland locality of Kpome is established in this study as recently documented in the costal locality of Pahou. Data from both localities suggest that resistance could be widespread in Benin and this highlights the need for further studies to assess the geographical distribution of insecticide resistance across Benin and neighboring countries as well as a more comprehensive analysis of the resistance mechanisms involved.


Assuntos
Anopheles/efeitos dos fármacos , Anopheles/parasitologia , Insetos Vetores/efeitos dos fármacos , Inseticidas/farmacologia , Malária/transmissão , Plasmodium/fisiologia , Animais , Benin/epidemiologia , Interações Hospedeiro-Parasita , Insetos Vetores/parasitologia , Resistência a Inseticidas , Malária/epidemiologia , Especificidade da Espécie
15.
Parasit Vectors ; 9(1): 385, 2016 07 04.
Artigo em Inglês | MEDLINE | ID: mdl-27378358

RESUMO

BACKGROUND: Large-scale implementation of Indoor Residual Spraying and Insecticide Treated Nets has been implemented in Plateau Department, Benin between 2011 and 2014. The purpose of this study was to monitor the frequency and mechanisms of pyrethroid resistance in malaria vectors following the implementation of vector control tools for malaria prevention. METHODS: Anopheles larvae were collected in 13 villages twice a year from 2012 to 2014. WHO tube tests were used to assess the phenotypic resistance of each population to 0.05 % deltamethrin. Sibling species within Anopheles gambiae complex were identified by PCR techniques. Taqman and biochemical assays were performed to identify the presence of kdr mutations in individual mosquitoes and to detect any increase in the activity of enzymes putatively involved in insecticide metabolism (oxidases, esterase and glutathione-S-transferases). Quantitative real time PCR was used to measure the expression of three metabolic genes involved in pyrethroid resistance (CYP6P3, CYP6M2 and GSTD3). RESULTS: Anopheles populations showed < 90 % mortality to deltamethrin in all villages and at all time points. The 1014 F kdr allele frequency was close to fixation (> 0.9) over the sampling periods in both An. gambiae and An. coluzzii. Biochemical assays showed higher activities of alpha esterase and GST in field malaria vector populations compared to susceptible mosquitoes. qPCR assays showed a significant increase of CYP6P3, CYP6M2 GSTD3 expression in An. gambiae after a three-year implementation of LLINs. CONCLUSION: The study confirmed that deltamethrin resistance is widespread in malaria vectors in Southern Benin. We suspect that the increase in deltamethrin resistance between 2012 and 2014 resulted from an increased expression of metabolic detoxification genes (CYP6M2 and CYP6P3) rather than from kdr mutations. It is urgent to evaluate further the impact of metabolic resistance on the efficacy of vector control interventions using pyrethroid insecticides.


Assuntos
Anopheles/efeitos dos fármacos , Insetos Vetores/efeitos dos fármacos , Resistência a Inseticidas , Inseticidas/farmacologia , Malária/prevenção & controle , Piretrinas/farmacologia , Animais , Anopheles/enzimologia , Anopheles/genética , Benin/epidemiologia , Feminino , Frequência do Gene , Humanos , Insetos Vetores/enzimologia , Insetos Vetores/genética , Larva , Malária/transmissão , Controle de Mosquitos , Mutação , Nitrilas/farmacologia
16.
Wellcome Open Res ; 1: 28, 2016 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-28191507

RESUMO

Background. Malaria remains an important public health issue in Benin, with Anopheles gambiae s.l. and Anopheles funestus s.s being the predominant vectors. This study was designed to generate information on An. funestus distribution, molecular speciation, Plasmodium infection rate and insecticide susceptibility status across Benin. Methods. Mosquito samples were collected from December 2014 to January 2016 in 46 localities in Benin. These samples were mapped and An. funestus collected were speciated to the molecular level. Plasmodium infection rate was determined using a Taqman assay and susceptibility to insecticides was assessed using the WHO guidelines. The genotyping of the L119F- Gste2 mutation was also carried out.  Results.  An. funestus was found in 8 out of the 46 localities surveyed with a high presence in Tanongou (wet Sudanese ecological zone), Kpome, Doukonta and Pahou (sub-equatorial ecological zone). Molecular identifications revealed that only An. funestuss.s was present in southern Benin, whereas in Tanongou (northern Benin) An. funestus s.s. and An. leesoni were found in sympatry at proportions of 77.7% and 22.3% respectively. Plasmodium infection rate of An. funestus was higher in southern Benin at a range of 13 to 18% compared to 5.6% recorded in Tanongou. High DDT (8±0.5%) and permethrin (11±0.5%) resistance were observed in Doukonta, Kpome and Pahou, contrasting with relatively low resistance profiles: mortality-DDT=90±3.18% and mortality-permethrin=100% in Tanongou. Genotyping analysis revealed  high frequency  of the resistant 119F allele in the South (Kpome and Doukonta) compared to the North (Tanongou).  Discussion and Conclusion. The high presence of   An. funestus in the South compared to the North  could be due to favorable environmental and climatic conditions found in both regions. A significant Plasmodium infection rate was recorded across the country. A high resistance profile was recorded in the southern Benin; this raises the need for further investigations on resistance selection factors.

17.
Parasit Vectors ; 7: 548, 2014 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-25471264

RESUMO

BACKGROUND: Malaria is endemic in sub-Saharan Africa with considerable burden for human health. Major insecticide resistance mechanisms such as kdr(R) and ace-1(R) alleles constitute a hindrance to malaria vector control programs. Anopheles gambiae bearing both kdr and ace-1 resistant alleles are increasingly recorded in wild populations. In order to maintain the efficacy of vector control strategies, the characterization of concomitant kdr and ace-1 resistance, and their pleiotropic effects on malaria vector phenotype on insecticide efficacy are important. METHODS: Larval and adult bioassays were performed with different insecticide classes used in public health following WHO standard guidelines on four laboratory Anopheles gambiae strains, sharing the same genetic background but harboring distinct resistance status: KISUMU with no resistance allele; ACERKIS with ace-1(R) allele; KISKDR with kdr(R) allele and ACERKDRKIS with both resistance alleles' ace-1(R) and kdr(R) . RESULTS: Larval bioassays indicate that the homozygote resistant strain harboring both alleles (ACERKDRKIS) displayed slightly but significantly higher resistance level to various insecticides like carbamates (bendiocarb, p < 0.001; propoxur, p = 0.02) and organophosphates (chlorpyriphos-methyl, p = 0.002; fenitrothion, p < 0.001) when compared to ACERKIS strain. However, no differences were recorded between ACERKDRKIS and KISKDR resistance level against permethrin (Pyrethroid, p = 0.7) and DDT (Organochlorine, p = 0.24). For adult bioassays, the percentages of mosquitoes knocked down were significantly lower for ACERKDRKIS than for KISKDR with permethrin (p = 0.003) but not with deltamethrin. The percentage of mortality from adult bioassays was similar between ACERKDRKIS and ACERKIS with carbamates and organophosphates, or between ACERKDRKIS and KISKDR with pyrethroid and DDT. Concerning acetylcholinesterase enzyme, ACERKDRKIS strain showed similarAChE1 activity than that of ACERKIS. CONCLUSION: The presence of both kdr(R) and ace-1(R) alleles seems to increase the resistance levels to both carbamate and organophosphate insecticides and at operational level, may represent an important threat to malaria vector control programs in West Africa.


Assuntos
Acetilcolinesterase/metabolismo , Anopheles/efeitos dos fármacos , Anopheles/genética , Resistência a Inseticidas/genética , Inseticidas/farmacologia , Acetilcolinesterase/genética , Animais , Bioensaio , Regulação Enzimológica da Expressão Gênica , Larva/efeitos dos fármacos
18.
Parasit Vectors ; 7: 409, 2014 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-25175167

RESUMO

BACKGROUND: Insecticide resistance in the mosquito vector is the one of the main obstacles against effective malaria control. In order to implement insecticide resistance management strategies, it is important to understand the genetic factors involved. In this context, we investigated the molecular basis of DDT resistance in the main malaria vector from Benin. METHODS: Anopheles gambiae mosquitoes were collected from four sites across Benin and identified to species/molecular form. Mosquitoes from Cotonou (M-form), Tori-Bossito (S-form) and Bohicon (S-form) were exposed to DDT 4% at a range of exposure times (30 min to 300 min). Another batch of mosquitoes from Cotonou and Malanville were exposed to DDT for 1 hour and the survivors 48 hours post exposure were used to quantify metabolic gene expression. Quantitative PCR assays were used to quantify mRNA levels of metabolic enzymes: GSTE2, GSTD3, CYP6P3 and CYP6M2. Expression (fold-change) was calculated using the ∆∆Ct method and compared to susceptible strains. Detection of target-site mutations (L1014F, L1014S and N1575Y) was performed using allelic discrimination TaqMan assays. RESULTS: DDT resistance was extremely high in all populations, regardless of molecular form, with no observed mortality after 300 min exposure. In both DDT-survivors and non-exposed mosquitoes, GSTE2 and GSTD3 were over-expressed in the M form at 4.4-fold and 3.5-fold in Cotonou and 1.5-fold and 2.5-fold in Malanville respectively, when compared to the susceptible strain. The CYP6M2 and CYP6P3 were over-expressed at 4.6-fold and 3.8-fold in Cotonou and 1.2-fold and 2.5-fold in Malanville respectively. In contrast, no differences in GSTE2 and CYP6M2 were observed between S form mosquitoes from Tori-Bossito and Bohicon compared to susceptible strain. The 1014 F allele was fixed in the S-form and at high frequency in the M-form (0.7-0.914). The frequency of 1575Y allele was 0.29-0.36 in the S-form and nil in the M-form. The 1014S allele was detected in the S form of An. gambiae in a 1014 F/1014S heterozygous specimen. CONCLUSION: Our results show that the kdr 1014 F, 1014S and 1575Y alleles are widespread in Benin and the expression of two candidate metabolic markers (GSTE2 and CYP6M2) are over-expressed specifically in the M-form.


Assuntos
Anopheles/efeitos dos fármacos , Anopheles/genética , DDT/farmacologia , Resistência a Inseticidas/genética , Inseticidas/farmacologia , Animais , Benin , DNA Complementar , Regulação da Expressão Gênica , Genótipo , Mutação , RNA/genética , RNA/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
19.
PLoS One ; 9(8): e103816, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25102176

RESUMO

Insensitive acetylcholinesterase resistance due to a mutation in the acetylcholinesterase (ace) encoding ace-1 gene confers cross-resistance to organophosphate and carbamate insecticides in Anopheles gambiae populations from Central and West Africa. This mutation is associated with a strong genetic cost revealed through alterations of some life history traits but little is known about the physiological and behavioural changes in insects bearing the ace-1(R) allele. Comparative analysis of the salivary gland contents between An. gambiae susceptible and ace-1(R) resistant strains was carried out to charaterize factors that could be involved in modifications of blood meal process, trophic behaviour or pathogen interaction in the insecticide-resistant mosquitoes. Differential analysis of the salivary gland protein profiles revealed differences in abundance for several proteins, two of them showing major differences between the two strains. These two proteins identified as saglin and TRIO are salivary gland-1 related proteins, a family unique to anopheline mosquitoes, one of them playing a crucial role in salivary gland invasion by Plasmodium falciparum sporozoites. Differential expression of two other proteins previously identified in the Anopheles sialome was also observed. The differentially regulated proteins are involved in pathogen invasion, blood feeding process, and protection against oxidation, relevant steps in the outcome of malaria infection. Further functional studies and insect behaviour experiments would confirm the impact of the modification of the sialome composition on blood feeding and pathogen transmission abilities of the resistant mosquitoes. The data supports the hypothesis of alterations linked to insecticide resistance in the biology of the primary vector of human malaria in Africa.


Assuntos
Acetilcolinesterase/genética , Anopheles/metabolismo , Resistência a Inseticidas/genética , Proteoma , Animais , Anopheles/genética , Anopheles/parasitologia , Interações Hospedeiro-Parasita , Proteínas de Insetos/química , Proteínas de Insetos/isolamento & purificação , Plasmodium falciparum/fisiologia , Análise de Componente Principal , Glândulas Salivares/metabolismo , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz
20.
Proc Biol Sci ; 281(1786)2014 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-24850924

RESUMO

Currently, there is a strong trend towards increasing insecticide-based vector control coverage in malaria endemic countries. The ecological consequence of insecticide applications has been mainly studied regarding the selection of resistance mechanisms; however, little is known about their impact on vector competence in mosquitoes responsible for malaria transmission. As they have limited toxicity to mosquitoes owing to the selection of resistance mechanisms, insecticides may also interact with pathogens developing in mosquitoes. In this study, we explored the impact of insecticide exposure on Plasmodium falciparum development in insecticide-resistant colonies of Anopheles gambiae s.s., homozygous for the ace-1 G119S mutation (Acerkis) or the kdr L1014F mutation (Kdrkis). Exposure to bendiocarb insecticide reduced the prevalence and intensity of P. falciparum oocysts developing in the infected midgut of the Acerkis strain, whereas exposure to dichlorodiphenyltrichloroethane reduced only the prevalence of P. falciparum infection in the Kdrkis strain. Thus, insecticide resistance leads to a selective pressure of insecticides on Plasmodium parasites, providing, to our knowledge, the first evidence of genotype by environment interactions on vector competence in a natural Anopheles-Plasmodium combination. Insecticide applications would affect the transmission of malaria in spite of resistance and would reduce to some degree the impact of insecticide resistance on malaria control interventions.


Assuntos
Anopheles/efeitos dos fármacos , Anopheles/microbiologia , Interações Hospedeiro-Parasita/efeitos dos fármacos , Insetos Vetores/efeitos dos fármacos , Insetos Vetores/microbiologia , Resistência a Inseticidas , Inseticidas/farmacologia , Plasmodium falciparum/efeitos dos fármacos , Animais , Anopheles/genética , Anopheles/metabolismo , Criança , Pré-Escolar , DDT/farmacologia , Comportamento Alimentar/efeitos dos fármacos , Feminino , Interação Gene-Ambiente , Genótipo , Humanos , Insetos Vetores/genética , Insetos Vetores/metabolismo , Oocistos/efeitos dos fármacos , Oocistos/crescimento & desenvolvimento , Fenilcarbamatos/farmacologia , Plasmodium falciparum/crescimento & desenvolvimento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA