Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Materials (Basel) ; 17(7)2024 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-38611995

RESUMO

Researchers from all around the world have been paying close attention to particle-based power tower technologies. On the King Saud University campus in the Kingdom of Saudi Arabia, the first integrated gas turbine-solar particle heating hybrid system has been realized. In this study, two different types of experiments were carried out to examine how susceptible prospective liner materials for thermal energy storage tanks were to erosion. An accelerated direct-impact test with high particulate temperature was the first experiment. A low-velocity mass-flow test was the second experiment, and it closely mimicked the flow circumstances in a real thermal energy storage tank. The tests were conducted on bare insulating fire bricks (IFBs) and IFBs coated with Tuffcrete 47, Matrigun 25 ACX, and Tuffcrete 60 M. The latter three lining materials were high-temperature-resilient materials made by Allied Mineral Products Inc. (AMP) (Columbus, OH, USA). The results showed that although IFBs coated with AMP materials worked well in this test, the accelerated direct-impact test significantly reduced the bulk of the bare IFB. As a result, lining substances must be added to the surface of IFBs to increase their strength and protection because they cannot be used in situations where particles directly impact their surface. On the other hand, the findings of the 60 h cold-particle mass-flow test revealed that the IFBs were not significantly eroded. Additionally, it was discovered that the degree of erosion on the samples of bare IFB was unaffected by the height of the particle bed.

2.
Materials (Basel) ; 15(8)2022 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-35454646

RESUMO

Utilizing solid particles as a heat-transfer medium in concentrated solar power applications has gained growing attention lately. Unlike molten salts, solid particles offer many benefits, which include: high operating temperatures (greater than 1000 °C), a lack of freezing issues and corrosivity, abundant availability, high thermal energy storage capacity, a low cost, and applicability in direct irradiation. Comprehensive knowledge of thermophysical and optical properties of solid particles is essential to ensure an effective harnessing of solar energy. The most important considerations when selecting solid particles include: thermophysical and optical properties, thermal resistance, crack resistance, satisfactory health and safety risks, availability, and low cost. It is also imperative to consider optical and thermophysical characteristics that might change from what they were "as received" after cyclic heating for a long period. Therefore, the knowledge of thermal performance of particulate materials becomes significant before using them as a heat-transfer medium. In this study, some particulate materials were chosen to study their feasibilities as heat-transfer and storage media for a particle-based central receiver tower system. These particulate materials included white sand, red sand, ilmenite, and Carbobead CP. The candidate particulate materials were heated at high temperatures for 6 h and then cooled to room temperature. After that, cyclic heating was performed on the particulate materials for 500 h at 1200 °C. The optical properties were represented by weighted solar absorptance, and the thermophysical properties of the particulates were measured "as received" and after cyclic heating (aging). EDX and XRD were conducted to quantify the chemical composition and interpret the changes in appearance associated with the particulate materials after cyclic heating. The results showed a considerable agglomeration in all particulates except for white sand in the 6 h heating test, and high agglomeration in the ilmenite. A slight decrease in the optical properties in the white sand and Carbobead CP was found after the aging test. The specific heat was decreased for red and white sand. The EDX and XRD results for white sand and Carbobead CP showed chemical stability, indicating high durability and reliability.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA