RESUMO
Torrefaction constitutes one of the promising technologies for the management of waste biomass and the production of high-carbon products for combustion, gasification, adsorption of pollutants or soil treatment. Unfortunately, waste biomass may be contaminated with toxic persistent organic pollutants, such as polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/PCDF) and dioxin-like biphenyls (dl-PCB). Literature does not provide consistent measurements on how the low-temperature thermochemical processing, such as torrefaction, affects the toxicity of biomass. This contribution assesses how a torrefaction treatment, conducted at 200 °C, modifies the toxicity due to PCDD/PCDF/dl-PCB in biomass. We deploy the XDS-CALUX biotest on five types of waste biomass (sewage sludge, tree bark, cattle manure, spent coffee ground, common reed), before and after treatment. The content of total dioxin- & biphenyl fraction compounds in the raw biomass, investigated in this study, varies from 0.14 to 3.67 pg BEQ·g-1d.m., and in the torrefied biomass between 0.17 and 6.00 pg BEQ·g-1d.m.; BEQ stands for bioanalytical equivalent. This increase is statistically insignificant at p = 0.05, taking into account all types of examined biomass. This proves that low-temperature torrefaction cannot detoxify biomass, i.e., chars, produced from biomass characterized by elevated concentration of PCDD/PCDF/dl-PCB, will reflect the contamination of the feedstocks. With respect to heavy metals, we conclude that only the content of Cd in biomass, and, to a lesser extent, the abundance of Cu and Fe, modify the toxicity of this material during its thermochemical treatment at low temperature.
Assuntos
Benzofuranos , Dioxinas , Bifenilos Policlorados , Dibenzodioxinas Policloradas , Animais , Bovinos , Biomassa , Bifenilos Policlorados/análise , Benzofuranos/toxicidade , Dibenzodioxinas Policloradas/toxicidade , Esgotos , Bioensaio , Dibenzofuranos PolicloradosRESUMO
Thermal decomposition of high-fluorine content PFAS streams for the disposal of old generations of concentrates of firefighting foams, exhausted ion-exchanged resins and granular activated carbon, constitutes the preferred method for destruction of these materials. This contribution studies the thermal transformation of perfluoropentanoic acid (C4F9C(O)OH, PFPA), as a model PFAS species, in gas-phase reactions over broad ranges of temperature and residence time, which characterise incinerators and cement kilns. Our focus is only on gas-phase reactions, to formulate a gas-phase submodel that, in future, could be used in comprehensive simulation of thermal destruction of PFAS; such comprehensive models will need to comprise fluorine mineralisation on flyash and in clinker material. Our submodel consists of 56 reactions and 45 species, and includes new pathways that cover the initial decomposition channels of PFPA, including those that lead to the formation of the n-C4F9 radical, the abstraction of hydroxyl H by O/H radicals, the fragmentation of the n-C4F9 radical, reactions between HF and perfluoropentanoic acid, as well as between HF and heptafluorobutanoyl fluoride (C3F7COF), and the cyclisation reactions. The model illustrates the formation of a wide spectrum of small CnFm and CnHFm compounds in the temperature window of 800-1500 K, 2 and 25 s residence time in a plug flow reactor, providing theoretical estimates for the operating conditions of PFAS thermal destruction systems. The initiation reactions involve the loss of HF and formation of the transition α-lactone species that converts to C3F7COF, with C4F9C(O)OH completely decomposed at 1020 K for 2 s residence time. At 1500 K, we predict the emission of êCF2 (biradical difluorocarbene), HF, CO2, CO, CF4, C2F6, and C2F4, but at < 1400 K, we note the formation of 1H-nonafluorobutane (C4HF9), phosgene (COF2), and heptafluorobutanoyl fluoride (C3F7COF), with 1-C4F8, 2-C4F8 and C3HF7 persisting to 1500 K. We demonstrate that, the gas-phase pyrolysis processes by themselves convert PFAS to HF and short-chain fluorocarbons, with similar product distribution for short (2 s) and long (25 s) residence times, as long as the treatment temperature exceeds 1500 K. These residence times reflect those encountered in incinerators and cement kilns, respectively. Thermokinetic and mechanistic insights revealed herein shall assist to innovate PFAS thermal disposal technologies, and, from a fundamental perspective, to accelerate research progress in modelling of gas/solid reactions that mineralise PFAS-derived fluorine.
Assuntos
Fluorocarbonos , Ácidos Carboxílicos , Carvão Vegetal , Incineração , CinéticaRESUMO
Brominated benzenes and phenols constitute direct precursors in the formation of bromine-bearing pollutants; most notably PBDD/Fs and other dioxin-type compounds. Elucidating accurate mechanisms and constructing robust kinetic models for the oxidative transformation of bromobenzenes and bromophenols into notorious Br-toxicants entail a comprehensive understanding of their initial oxidation steps. However, pertinent mechanistic studies, based on quantum chemical calculations, have only focused on secondary condensation reactions into PBDD/Fs and PBDEs. Literature provide kinetic parameters for these significant reactions, nonetheless, without attempting to compile the acquired Arrhenius coefficients into kinetic models. To fill in this gap, this study sets out to illustrate primary chemical phenomena underpinning the low-temperature combustion of a monobromobenzene molecule (MBZ) based on a detail chemical kinetic model. The main aim is to map out temperature-dependent profiles for major intermediates and products. The constructed kinetic model encompasses several sub-mechanisms (i.e, HBr and benzene oxidation, bromination of phenoxy radicals, and initial reaction of oxygen molecules with MBZ). In light of germane experimental observations, the formulated kinetic model herein offers an insight into bromine speciation, conversion profile of MBZ, and formation of higher brominated congeners of benzene and phenol. For instance, the model satisfactorily accounts for the yields of dibromophenols from oxidation of a 2-bromophenol (2-MBP) molecule, in reference to analogous experimental measurements. From an environmental perspective, the model reflects the accumulation of appreciable loads of 2-bromophenoxy radicals at intermediate temperatures (i.e., a bromine-containing environmental persistent free radical, EPFR) from combustion of MBZ and 2-MBP molecules. Acquired mechanistic/kinetic parameters shall be useful in comprehending the complex bromine transformation chemistry in real scenarios, most notably those prevailing in thermal recycling of brominated flame retardants (BFRs).
Assuntos
Dioxinas , Retardadores de Chama , Bromo , Fenóis , TemperaturaRESUMO
The conventional process of lithium extraction from α-spodumene (LiAlSi2O6) is energy-intensive and associated with high byproduct management cost. Here, we investigate an alternative process route that uses potassium sulfate (K2SO4) to extract lithium while producing leucite (KAlSi2O6), a slow release fertilizer. Presenting the first-ever in situ record of the reaction of α-spodumene with potassium sulfate, we use synchrotron X-ray diffraction (XRD) and differential scanning calorimetry (DSC) to document the reaction sequence during prograde heating. From 780 °C, we observe a broad endothermic DSC peak, abnormal expansion of the α-spodumene structure, and an increase in α-(Li, K)-spodumene peak intensity during heating with potassium sulfate, indicative of the exchange between lithium and potassium in the spodumene structure. When 11 ± 1% K occupancy in the M2 site of α-(Li, K)-spodumene is reached, the mechanism changes from ion exchange to a reconstructive transformation of α-(Li, K)-spodumene into leucite, evidenced by a decrease in α-spodumene and potassium sulfate abundance concurring with formation of leucite over a narrow temperature range between 850 and 890 °C. The increasing background intensity in synchrotron XRD above 870 °C suggests that a lithium sulfate-bearing melt starts to form once >90% of α-spodumene has been converted during the reaction. This fundamental understanding of the reaction between α-spodumene and potassium sulfate will enable future development of lithium extraction routes using additives to significantly decrease energy intensity and to produce marketable byproducts from α-spodumene.
RESUMO
Singlet oxygen represents a form of reactive oxygen species (ROS), produced by electronic excitation of molecular triplet oxygen. In general, highly reactive oxygen-bearing molecules remain the backbone of diverse ground-breaking technologies, driving the waves of scientific development in environmental, biotechnology, materials, medical and defence sciences. Singlet oxygen has a relatively high energy of about 94â kJ/mol compared to the ground state molecular O2 and therefore initiates low-temperature oxidation of electron-rich hydrocarbons. Such reactivity of singlet oxygen has inspired a wide array of emerging applications in chemical, biochemical and combustion phenomena. This paper reviews the intrinsic properties of singlet oxygen, emphasising the physical aspects of its natural occurrences, production techniques, as well as chemical reactivity with organic fuels and contaminants. The review assembles critical scientific studies on the implications of singlet oxygen in initiating chemical reactions, identifying, and quantitating the consequential effects on combustion, fire safety, as well as on the low-temperature treatment of organic wastes and contaminants. Moreover, the content of this review appraises computational efforts, such as DFT quantum mechanical modelling, in developing mechanistic (i. e., both thermodynamic and kinetic) insights into the reaction of singlet oxygen with hydrocarbons.
RESUMO
We conducted molecular dynamics (MD) simulations to calculate the density and surface tension of concentrated ammonium nitrate (AN) solutions up to the solubility limit of ammonium nitrate in water, by combining the SPC/E, SPCE/F and TIP4P/2005 water models with OPLS model for ammonium and nitrate ions. This is the first time that the properties of concentrated solutions of nitrates, especially AN, have been studied by molecular dynamics. We effectively account for the polarisation effects by the electronic continuum correction (ECC), practically realised via rescaling of the ionic charges. We found that, the full-charge force field MD simulations overestimate the experimental results, as the ions experience repulsion from the interface and prefer to remain in the subsurface layer and the bulk solution. In contrast, reducing the ionic charges results in the behaviour that fits well with the experimental data. The nitrate anions display a greater propensity for the interface than the ammonium cations. We accurately predict both the density and the rise in the surface tension of concentrated solutions of AN, recommending TIP4P/2005 for water and the scaled-charge OPLS model (OPLS/ECC) for the ions in the solutions. We observe that, the adsorption of anions to the interface accompanies their depletion in the subsurface layer, which is preferentially occupied by cations, resulting in the formation of the electric double layer. We demonstrate the ion deficiency for up to 3 Å below the surface and establish the requirement to include the polarisability effects in the OPLS model for AN. While these results confirmed the findings of the previous studies for dilute solutions, they are new in the solubility limit. Concentrated solutions exhibit a strong effect of the abundance of solute on the coordination numbers of ions and on the degree of ion pairing. Surprisingly, ion pairing decreases significantly at the interface compared with the bulk. The present study identifies OPLS/ECC, along with TIP4P/2005, to yield accurate predictions of physical properties of concentrated AN, with precision required for industrial applications, such as a formulation of emulsion and fuel-oil explosives that now predominate the civilian use of AN. An application of this model will allow one to predict the surface properties of supersaturated solutions of AN which fall outside the capability of the present laboratory experiments but are important industrially.
RESUMO
Co-pyrolysis of brominated flame retardants (BFRs) with polymeric materials prevails in scenarios pertinent to thermal recycling of bromine-laden objects; most notably the non-metallic fraction in e-waste. Hydro-dehalogenation of aromatic compounds in a hydrogen-donating medium constitutes a key step in refining pyrolysis oil of BFRs. Chemical reactions underpinning this process are poorly understood. Herein, we utilize accurate density functional theory (DFT) calculations to report thermo-kinetic parameters for the reaction of solid polyethylene, PE, (as a surrogate model for aliphatic polymers) with prime products sourced from thermal decomposition of BFRs, namely, HBr, bromophenols; benzene, and phenyl radical. Facile abstraction of an ethylenic H by Br atoms is expected to contribute to the formation of abundant HBr concentrations in practical systems. Likewise, a relatively low energy barrier for aromatic Br atom abstraction from a 2-bromophenol molecule by an alkyl radical site, concurs with the reported noticeable hydro-debromination capacity of PE. Pathways entailing a PE-induced bromination of a phenoxy radical should be hindered in view of high energy barrier for a Br transfer into the para position of the phenoxy radical. Adsorption of a phenoxy radical onto a Cu(Br) site substituted at the PE chain affords the commonly discussed PBDD/Fs precursor of a surface-bounded bromophenolate adduct. Such scenario arises due to the heterogeneous integration of metals into the bromine-rich carbon matrix in primitive recycling of e-waste and their open burning.
Assuntos
Retardadores de Chama/análise , Polietileno/química , Bromo , Halogenação , Hidrocarbonetos Bromados/análise , Cinética , Fenóis , Pirólise , ReciclagemRESUMO
Brominated aromatic rings constitute main structural entities in virtually all commercially deployed brominated flame retardants (BFRs). Oxidative decomposition of BFRs liberates appreciable quantities of bromobenzenes (BBzs). This contribution reports experimental measurements for the generation of notorious polybrominated dibenzofurans (PBDFs) and polybrominated diphenyl ethers (PBDEs) from oxidation of monobromobenzene (MBBz). In the light of developed product profiles, we map out reaction pathways and report kinetic parameters for PBDFs and PBDEs formation from coupling reactions of MBBz molecule and its derived ortho-bromophenoxy (o-BPhxy) radical using quantum chemical calculations. The identification and quantitation of product species involve the use of gas chromatograph - triple quadrupole mass spectrometer (GC-QQQMS) operating in the multiple reaction monitoring (MRM) mode. Bimolecular reactions of MBBz and o-BPhxy result in the generation of twelve pre-PBDF intermediates, of which four can also serve as building blocks for the synthesis of PBDEs. These four intermediates are denoted as pre-PBDE/pre-PBDF, with the remaining eight symbolised as pre-PBDF. The resonance-stabilised structure of the o-BPhxy radical accumulates more spin density character on its phenoxy O atom (30.9 %) in reference to ortho-C and para-C sites. Thus, the formation of the pre-PBDE/pre-PBDF structures via O/o-C couplings advances faster as it requires lower activation enthalpies (79.2 - 84.9 kJ mol-1) than the pre-PBDF moieties, which arise via pairing reactions involving o-C(H or Br)/o-C(H or Br) sites (97.2 - 180.2 kJ mol-1). Kinetic analysis indicates that, the O/o-C pre-PBDE/pre-PBDF adducts self-eject the out-of-plane H atoms to produce PBDEs, rather than undergo a three-step mechanism forming PBDFs. However, experimental measurements demonstrate PBDEs appearing in lower yields as compared to those of PBDFs; presumably due to H- and Br-induced conversion of the PBDEs into PBDFs following a simple ring-closure reaction. High reaction temperatures facilitate loss of ortho Br atom from PBDEs, followed by cyclisation step to generate PBDFs. PBDFs are observed in a narrow temperature range of 700-850 °C, whereas PBDEs form between 550-850 °C. Since formation mechanisms of PBDFs and polybrominated dibenzo-p-dioxins (PBDDs) are typically only sensitive to the bromination at ortho positions, the results reported herein apply also to higher brominated isomers of BBzs.
RESUMO
Oxazole has critical roles not only in heterocycle (bio)chemistry research, but also as the backbone of many active natural and medicinal species. These diverse and specialised functions can be attributed to the unique physicochemical properties of oxazole. This contribution investigates the reaction of oxazole and its derivatives with singlet oxygen, employing density functional theory DFT-B3LYP calculations. The absence of allylic hydrogen in oxazole eliminates the ene-mode addition of singlet oxygen to the aromatic ring. Therefore, the primary reaction pathway constitutes the [4 + 2]-cycloaddition of singlet oxygen to oxazole ring, favouring an energetically accessible corridor of 57 kJ/mol to produce imino-anhydride which is postulated to convert to triamide end-product in subsequent steps. The pseudo-first-order reaction rate for substituted oxazole (e.g., 4-methyl-2,5-diphenyloxazole, 1.14 × 106 M-1 s-1) appears slightly higher than that of unsubstituted oxazole (0.94 × 106 M-1 s-1) considering the same initial concentration of the species at 300 K, due to the electronic effect of the functional groups. The global reactivity descriptors have justified the relative influence of the functional groups along with their respective physiochemical properties.
RESUMO
This study investigates the geometric and electronic properties of selected BFRs in their ground (S0) and first singlet excited (S1) states deploying methods of the density functional theory (DFT) and the time-dependent density functional theory (TDDFT). We estimate the effect of the S0â S1 transition on the elongations of the C-Br bond, identify the frontier molecular orbitals involved in the excitation process and compute partial atomic charges for the most photoreactive bromine atoms. The bromine atom attached to an ortho position in HBB (with regard to C-C bond; 2,2',4,4',6,6'-hexabromobiphenyl), TBBA (with respect to the hydroxyl group; 2,2',6,6'-tetrabromobisphenol A), HBDE and BTBPE (in reference to C-O linkage; 2,2',4,4',6,6'-hexabromodiphenylether and 1,2-bis(2,4,6-tribromophenoxy)ethane, respectively) bears the highest positive atomic charge. This suggests that, these positions undergo reductive debromination reactions to produce lower brominated molecules. Debromination reactions ensue primarily in the aromatic compounds substituted with the highest number of bromine atoms owing to the largest stretching of the C-Br bond in the first excited state. The analysis of the frontier molecular orbitals indicates that, excitations of BFRs proceed via πâπ*, or πâσ* or nâσ* electronic transitions. The orbital analysis reveals that, the HOMO-LUMO energy gap (EH-L) for all investigated bromine-substituted aromatic molecules falls lower (1.85-4.91 eV) than for their non-brominated analogues (3.39-8.07 eV), in both aqueous and gaseous media. The excitation energies correlate with the EH-L values. The excitation energies and EH-L values display a linear negative correlation with the number of bromine atoms attached to the molecule. Spectral analysis of the gaseous-phase systems reveals that, the highly brominated aromatics endure lower excitation energies and exhibit red shifts of their absorption bands in comparison to their lower brominated congeners. We attained a satisfactory agreement between the experimentally measured absorption peak (λmax) and the theoretically predicted oscillator strength (λmax) for the UV-Vis spectra. This study further confirms that, halogenated aromatics only absorb light in the UV spectral region and that effective photodegradation of these pollutants requires the presence of photocatalysts.
Assuntos
Poluentes Ambientais/análise , Retardadores de Chama/análise , Modelos Teóricos , Fotólise , Bifenil Polibromatos/análise , Raios Ultravioleta , Poluentes Ambientais/efeitos da radiação , Retardadores de Chama/efeitos da radiação , Bifenil Polibromatos/efeitos da radiaçãoRESUMO
The interplay of phenolic molecules with 3d transition metals, such as Fe and Cu, and their oxide surfaces, provide important fingerprints for environmental burdens associated with thermal recycling of e-waste and subsequent generation of notorious dioxins compounds and phenoxy-type Environmental Persistent Free Radicals (EPFRs). DRIFTS and EPR measurements established a strong interaction of the phenol molecule with transition metal oxides via synthesis of phenolic- and catecholic-type EPFRs intermediates. In this contribution, we comparatively examined the dissociative adsorption of a phenol molecule, as the simplest model for phenolic-type compounds, on Cu and Fe surfaces and their partially oxidized configurations through accurate density functional theory (DFT) studies. The underlying aim is to elucidate the specific underpinning mechanism forming phenoxy- or phenolate-type EFPRs. Simulated results show that, the phenol molecule undergoes fission of its hydroxyl's O-H bond via accessible activation energies. These values are lower by 46.5-74.1% when compared with the analogous gas phase value. Physisorbed molecules of phenol incur very low binding energies in the range of -2.1 to -5.5 over clean Cu/Fe and their oxides surfaces. Molecular attributes based on charge transfer and geometrical features are in accord with the very weak interaction in physisorbed states. Thermo-kinetic parameters established over the temperature region of 300 and 1000â¯K, exhibit a lower activation energy for scission of phenolic's O-H bonds over the oxide surfaces in reference to their pure surfaces (24.7 and 43.0â¯kcalâ¯mol-1vs 38.4 and 47.0â¯kcalâ¯mol-1).
Assuntos
Radicais Livres/química , Fenol/química , Fenóis/química , Adsorção , Catecóis , Dioxinas , Radical Hidroxila , Oxirredução , Óxidos/química , Temperatura , Elementos de TransiçãoRESUMO
Polychlorinated dibenzo-p-dioxins (PCDDs) and dibenzofurans (PCDFs) remain of particular concern owing to their extensive toxicity towards health and accumulation in the environment. Atmospheric oxidation (by ambient oxygen molecules) of this class of persistent environmental pollutants has little to no kinetic feasibility due to very sizable activation energies in the entrance channel. The current control measures involve energy-intensive source incineration of contaminated materials at high temperatures as high as 850⯰C. This study finds an alternative low-energy approach of destroying dioxin-like compounds, proposing that advanced oxidation by highly reactive singlet oxygen (O21Δg, originated from chemical, surface-mediated and photochemical processes) can initiate low-temperature remediation of these pollutants. This contribution completes the first milestone in mapping out the mechanisms of the electrophilic addition of singlet oxygen to unsubstituted and chlorinated dibenzo-p-dioxin (DBD) and dibenzofuran (DBF) structures, according to density functional theory DFT-B3LYP method in conjunction with the 6-311+g(d,p) basis set, as well as energy refinements based on the approximate spin-projection scheme. The [2+2]-cycloaddition mechanism appears dominant for singlet oxidation of dibenzo-p-dioxin with a fitted rate constant of k(T)â¯=â¯5.01â¯×â¯10-14 exp(-98000/RT). On the other hand, the addition of singlet oxygen to the aromatic ring of dibenzofuran primarily transpires via [4+2]-cycloaddition channel with a fitted rate constant of k(T)â¯=â¯2.16â¯×â¯10-13 exp(-119000/RT). The results suggest that application of singlet oxygen can reduce the energy cost of recycling halogenated and flame retarded materials.
Assuntos
Dioxinas/química , Poluentes Ambientais/química , Recuperação e Remediação Ambiental/métodos , Furanos/química , Oxigênio Singlete/química , Oxirredução , TemperaturaRESUMO
Monoterpenes represent a class of hydrocarbons consisting of two isoprene units. Like many other terpenes, monoterpenes emerge mainly from vegetation, indicating their significance in both atmospheric chemistry and pharmaceutical and food industries. The atmospheric recycling of monoterpenes constitutes a major source of secondary organic aerosols. Therefore, this contribution focuses on the mechanism and kinetics of atmospheric oxidation of five dominant monoterpenes (i.e., limonene, α-pinene, ß-pinene, sabinene, and camphene) by singlet oxygen. The reactions are initiated via the ene-type addition of singlet oxygen (O2 1Δg) to the electron-rich double bond, progressing favorably through the concerted reaction mechanisms. The physical analyses of the frontier molecular orbitals agree well with the thermodynamic properties of the selected reagents, and the computed reaction rate parameters. The reactivity of monoterpenes with O2 1Δg follows the order of α-pinene > sabinene > limonene > ß-pinene > camphene, i.e., α-pinene and camphene retain the highest and lowest reactivity toward singlet oxygen, with rate expressions of k(T) (M-1 s-1) = 1.13 × 108 exp(-48(kJ)/RT(K)) and 6.93 × 108 exp(-139(kJ)/RT(K)), respectively. The effect of solvent on the primary reaction pathways triggers a slight reduction in energy, ranging between 12 and 34 kJ/mol.
RESUMO
Photo-degradation of organic pollutants plays an important role in their removal from the environment. This study provides an experimental and theoretical account of the reaction of singlet oxygen O2(1Δg) with the biodegradable-resistant species of phenol in an aqueous medium. The experiments combine customised LED-photoreactors, high-performance liquid chromatography (HPLC), and electron paramagnetic resonance (EPR) imaging, employing rose bengal as a sensitiser. Guided by density functional theory (DFT) calculations at the M062X level, we report the mechanism of the reaction and its kinetic model. Addition of O2(1Δg) to the phenol molecule branches into two competitive 1,4-cycloaddition and ortho ene-type routes, yielding 2,3-dioxabicyclo[2.2.2]octa-5,7-dien-1-ol (i.e., 1,4-endoperoxide 1-hydroxy-2,5-cyclohexadiene) and 2-hydroperoxycyclohexa-3,5-dien-1-one, respectively. Unimolecular rearrangements of the 1,4-endoperoxide proceed in a facile exothermic reaction to form the only experimentally detected product, para-benzoquinone. EPR revealed the nature of the oxidation intermediates and corroborated the appearance of O2(1Δg) as the only active radical participating in the photosensitised reaction. Additional experiments excluded the formation of hydroxyl (HOË), hydroperoxyl (HO2Ë), and phenoxy intermediates. We detected for the first time the para-semibenzoquinone anion (PSBQ), supporting the reaction pathway leading to the formation of para-benzoquinone. Our experiments and the water-solvation model result in the overall reaction rates of kr-solvation = 1.21 × 104 M-1 s-1 and kr = 1.14 × 104 M-1 s-1, respectively. These results have practical application to quantify the degradation of phenol in wastewater treatment.
RESUMO
Promoting the production of industrially important aromatic chloroamines over transition-metal nitrides catalysts has emerged as a prominent theme in catalysis. This contribution provides an insight into the reduction mechanism of p-chloronitrobenzene (p-CNB) to p-chloroaniline (p-CAN) over the γ-Mo2N(111) surface by means of density functional theory calculations. The adsorption energies of various molecularly adsorbed modes of p-CNB were computed. Our findings display that, p-CNB prefers to be adsorbed over two distinct adsorption sites, namely, Mo-hollow face-centered cubic (fcc) and N-hollow hexagonal close-packed (hcp) sites with adsorption energies of -32.1 and -38.5 kcal/mol, respectively. We establish that the activation of nitro group proceeds through direct pathway along with formation of several reaction intermediates. Most of these intermediaries reside in a significant well-depth in reference to the entrance channel. Central to the constructed mechanism is H-transfer steps from fcc and hcp hollow sites to the NO/-NH groups through modest reaction barriers. Our computed rate constant for the conversion of p-CNB correlates very well with the experimental finding (0.018 versus 0.033 s-1 at â¼500 K). Plotted species profiles via a simplified kinetics model confirms the experimentally reported high selectivity toward the formation of p-CAN at relatively low temperatures. It is hoped that thermokinetics parameters and mechanistic pathways provided herein will afford a molecular level understanding for γ-Mo2N-mediated conversion of halogenated nitrobenzenes into their corresponding nitroanilines; a process that entails significant industrial applications.
RESUMO
Catalysts of iron oxide on γ-alumina and silica which were prepared by an incipient wetness impregnation technique have been investigated in an effort to understand how the surface chemical properties are influenced by the nature of the supports. Surprisingly, this is the first study to compare in depth the influence of the supports on physicochemical parameters such as acidity, site nuclearity, and reducibility. In this study, surface characterisation techniques including N2 physisorption at -196 °C, ammonia temperature-programmed desorption, inductively coupled plasma optical emission spectrometry, temperature-programmed reduction with hydrogen, CO-chemisorption, scanning electron microscopy, transmission electron microscopy, and NO adsorption by in situ Fourier transform infrared spectroscopy have been performed to understand the different surface reactions occurring over the two different supports. The aim of this study is to ascertain the primary differences between these two catalysts using several catalyst characterization techniques and correlate their chemical and structural differences to their catalytic activity in the conversion of 2-chlorophenol. The results disclose a higher density of acid sites, a smaller particle size of iron oxide, stabilization of Fe(II) aluminate after reduction on the alumina surface, and finally, the formation of isolated iron cations on the surface of alumina which are notably absent on the silica-supported catalyst.
RESUMO
Hydrogen halides (HCl/HBr) represent major halogen fragments from the thermal decomposition of halogen laden materials, most notably PVC and brominated flame retardants (BFRs). Co-pyrolysis of halogen-containing solid waste with metal oxides is currently deployed as a mainstream strategy to treat halogen content as well as to recycle the valuable metallic fraction embedded in electric arc furnace dust (EAFD) and e-waste. However, designing an industrial-scale recycling facility necessitates accurate knowledge on mechanistic and thermo-kinetic parameters dictating the interaction between metal oxides and hydrogen halides. In this contribution, we investigate chemical interplay between HCl/HBr and zincite surfaces as a representative model for structures of zinc oxides in EAFD by using different sets of functionals, unit cell size and energy cut-off. In the first elementary step, dissociative adsorption of the HCl/HBr molecules affords oxyhalide structures (Cl/Br-Zn, H-O) via modest activation barriers. Conversion of the oxyhalide structure into zinc halides occurs through two subsequent steps, further dissociative adsorption of HCl/Br over the same surface Zn atom as well as the release of a H2O molecule. Evaporation (or desorption of zinc halide molecules) signifies a bottleneck for the overall halogenation of ZnO. Our simplified kinetic model on the HCl + ZnO system concurs very well with experimentally reported TGA weight loss profiles on two grounds: accumulation of oxyhalides until â¼700 K and desorption of ZnCl2 at higher temperatures. The thermo-kinetic and mechanistic aspects reported herein could be useful in the pursuit of a design of a large-scale catalytic upgrading unit that operates to extract valuable zinc loads from EAFD.
RESUMO
This study develops technology for mitigation of NOx formed in thermal processes using recycled plastics such as polyethylene (PE). Experiments involve sample characterization, and thermogravimetric decomposition of PE under controlled atmospheres, with NOx concentration relevant to industrial applications. TGA-Fourier transform infrared (FTIR) spectroscopy and NOx chemiluminescence serve to obtain the removal efficiency of NOx by fragments of pyrolyzing PE. Typical NOx removal efficiency amounts to 80%. We apply the isoconversional method to derive the kinetic parameters, and observe an increasing dependency of activation energy on the reaction progress. The activation energies of the process span 135 kJ/mol to 226 kJ/mol, and 188 kJ/mol to 268 kJ/mol, for neat and recycled PE, respectively, and the so-called compensation effect accounts for the natural logarithmic pre-exponential ln (A/min-1) factors of ca. 19-35 and 28-41, in the same order, depending on the PE conversion in the experimental interval of between 5 and 95%. The observed delay in thermal events of recycled PE reflects different types of PE in the plastic, as measurements of intrinsic viscosity indicate that, the recycled PE comprises longer linear chains. The present evaluation of isoconversional activation energies affords accurate kinetic modeling of both isothermal and nonisothermal decomposition of PE in NOx-doped atmosphere. Subsequent investigations will focus on the effect of mass transfer and the presence of oxygen, as reburning of NOx in large-scale combustors take place at higher temperatures than those included in the current study.
Assuntos
Plásticos , Reciclagem , Atmosfera , Cinética , Óxido Nítrico , PolietilenoRESUMO
The prevalence of global arsenic groundwater contamination has driven widespread research on developing effective treatment systems including adsorption using various sorbents. The uptake of arsenic-based contaminants onto established sorbents such as activated carbon (AC) can be effectively enhanced via immobilization/impregnation of iron-based elements on the porous AC surface. Recent suggestions that AC pores structurally consist of an eclectic mix of curved fullerene-like sheets may affect the arsenic adsorption dynamics within the AC pores and is further complicated by the presence of nano-sized iron-based elements. We have therefore, attempted to shed light on the adsorptive interactions of arsenate-iron nanoparticles with curved fullerene-like sheets by using hybridized quantum mechanics/molecular mechanics (QMMM) calculations and microscopy characterization. It is found that, subsequent to optimization, chemisorption between HAsO42- and the AC carbon sheet (endothermic process) is virtually non-existent - this observation is supported by experimental results. Conversely, the incorporation of iron nanoparticles (FeNPs) into the AC carbon sheet greatly facilitates chemisorption of HAsO42-. Our calculation implies that iron carbide is formed at the junction between the iron and the AC interface and this tightly chemosorbed layer prevents detachment of the FeNPs on the AC surface. Other aspects including electronic structure/properties, carbon arrangement defects and rate of adsorptive interaction, which are determined using the Climbing-Image NEB method, are also discussed.
RESUMO
Dissolved organic matter (DOM) acts as an effective photochemical sensitizer that produces the singlet delta state of molecular oxygen (O21Δg), a powerful oxidizer that removes aniline from aqueous solutions. However, the exact mode of this reaction, the p- to o-iminobenzoquinone ratio, and the selectivity of one over the other remain largely speculative. This contribution resolves these uncertainties. We report, for the first time, a comprehensive mechanistic and kinetic account of the oxidation of aniline with the singlet delta oxygen using B3LYP and M06 functionals in both gas and aqueous phases. Reaction mechanisms have been mapped out at E, H, and G scales. The 1,4-cycloaddition of O21Δg to aniline forms a 1,4-peroxide intermediate (M1), which isomerizes via a closed-shell mechanism to generate a p-iminobenzoquinone molecule. On the other hand, the O21Δg ene-type reaction forms an o-iminobenzoquinone product when the hydroperoxyl bond breaks, splitting hydroxyl from the 1,2-hydroperoxide (M3) moiety. The gas-phase model predicts the formation of both p- and o-iminobenzoquinones. In the latter model, the M1 adduct displays the selectivity of up to 96%. A water-solvation model predicts that M1 decomposes further, forming only p-iminobenzoquinone with a rate constant of k = 1.85 × 109 (L/(mol s)) at T = 313 K. These results corroborate the recent experimental findings of product concentration profile in which p-iminobenzoquinonine represents the only detected product.