Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
2.
Nat Immunol ; 25(3): 537-551, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38337035

RESUMO

A nasally delivered chimpanzee adenoviral-vectored severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) vaccine (ChAd-SARS-CoV-2-S) is currently used in India (iNCOVACC). Here, we update this vaccine by creating ChAd-SARS-CoV-2-BA.5-S, which encodes a prefusion-stabilized BA.5 spike protein. Whereas serum neutralizing antibody responses induced by monovalent or bivalent adenoviral vaccines were poor against the antigenically distant XBB.1.5 strain and insufficient to protect in passive transfer experiments, mucosal antibody and cross-reactive memory T cell responses were robust, and protection was evident against WA1/2020 D614G and Omicron variants BQ.1.1 and XBB.1.5 in mice and hamsters. However, depletion of memory CD8+ T cells before XBB.1.5 challenge resulted in loss of protection against upper and lower respiratory tract infection. Thus, nasally delivered vaccines stimulate mucosal immunity against emerging SARS-CoV-2 strains, and cross-reactive memory CD8+ T cells mediate protection against lung infection by antigenically distant strains in the setting of low serum levels of cross-reactive neutralizing antibodies.


Assuntos
COVID-19 , Infecções Respiratórias , Vacinas , Cricetinae , Animais , Camundongos , Linfócitos T CD8-Positivos , SARS-CoV-2 , COVID-19/prevenção & controle , Anticorpos Neutralizantes , Anticorpos Amplamente Neutralizantes , Pan troglodytes
3.
Viruses ; 15(11)2023 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-38005953

RESUMO

mRNA vaccines have attracted widespread research attention with clear advantages in terms of molecular flexibility, rapid development, and potential for personalization. However, current mRNA vaccine platforms have not been optimized for induction of CD4/CD8 T cell responses. In addition, the mucosal administration of mRNA based on lipid nanoparticle technology faces challenges in clinical translation. In contrast, adenovirus-based vaccines induce strong T cell responses and have been approved for intranasal delivery. To leverage the inherent strengths of both the mRNA and adenovirus platforms, we developed a novel modular adenoviral mRNA delivery platform based on Tag/Catcher bioconjugation. Specifically, we engineered adenoviral vectors integrating Tag/Catcher proteins at specific locales on the Ad capsid proteins, allowing us to anchor mRNA to the surface of engineered Ad viruses. In proof-of-concept studies, the Ad-mRNA platform successfully mediated mRNA delivery and could be optimized via the highly flexible modular design of both the Ad-mRNA and protein bioconjugation systems.


Assuntos
Adenoviridae , Vetores Genéticos , Vacinas de mRNA , Adenoviridae/genética , Linfócitos T CD4-Positivos , Linfócitos T CD8-Positivos , Vetores Genéticos/genética , Engenharia Genética
4.
bioRxiv ; 2023 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-37986823

RESUMO

Waning immunity and continued virus evolution have limited the durability of protection from symptomatic infection mediated by intramuscularly (IM)-delivered mRNA vaccines against COVID-19 although protection from severe disease remains high. Mucosal vaccination has been proposed as a strategy to increase protection at the site of SARS-CoV-2 infection by enhancing airway immunity, potentially reducing rates of infection and transmission. Here, we compared protection against XBB.1.16 virus challenge 5 months following IM or mucosal boosting in non-human primates (NHP) that had previously received a two-dose mRNA-1273 primary vaccine regimen. The mucosal boost was composed of a bivalent chimpanzee adenoviral-vectored vaccine encoding for both SARS-CoV-2 WA1 and BA.5 spike proteins (ChAd-SARS-CoV-2-S) and delivered either by an intranasal mist or an inhaled aerosol. An additional group of animals was boosted by the IM route with bivalent WA1/BA.5 spike-matched mRNA (mRNA-1273.222) as a benchmark control. NHP were challenged in the upper and lower airways 18 weeks after boosting with XBB.1.16, a heterologous Omicron lineage strain. Cohorts boosted with ChAd-SARS-CoV-2-S by an aerosolized or intranasal route had low to undetectable virus replication as assessed by levels of subgenomic SARS-CoV-2 RNA in the lungs and nose, respectively. In contrast, animals that received the mRNA-1273.222 boost by the IM route showed minimal protection against virus replication in the upper airway but substantial reduction of virus RNA levels in the lower airway. Immune analysis showed that the mucosal vaccines elicited more durable antibody and T cell responses than the IM vaccine. Protection elicited by the aerosolized vaccine was associated with mucosal IgG and IgA responses, whereas protection elicited by intranasal delivery was mediated primarily by mucosal IgA. Thus, durable immunity and effective protection against a highly transmissible heterologous variant in both the upper and lower airways can be achieved by mucosal delivery of a virus-vectored vaccine. Our study provides a template for the development of mucosal vaccines that limit infection and transmission against respiratory pathogens.

5.
Mol Ther ; 31(9): 2600-2611, 2023 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-37452494

RESUMO

B cells are the antibody-producing arm of the adaptive immune system and play a critical role in controlling pathogens. Several groups have now demonstrated the feasibility of using engineered B cells as a therapy, including infectious disease control and gene therapy of serum deficiencies. These studies have largely utilized ex vivo modification of the cells. Direct in vivo engineering would be of utility to the field, particularly in infectious disease control where the infrastructure needs of ex vivo cell modification would make a broad vaccination campaign highly challenging. In this study we demonstrate that engineered adenoviral vectors are capable of efficiently transducing murine and human primary B cells both ex vivo and in vivo. We found that unmodified human adenovirus C5 was capable of infecting B cells in vivo, likely due to interactions between the virus penton base protein and integrins. We further describe vector modification with B cell-specific gene promoters and successfully restrict transgene expression to B cells, resulting in a strong reduction in gene expression from the liver, the main site of human adenovirus C5 infection in vivo.


Assuntos
Adenoviridae , Doenças Transmissíveis , Camundongos , Humanos , Animais , Adenoviridae/genética , Vetores Genéticos/genética , Terapia Genética/métodos , Proteínas Virais/genética , Linfócitos B
6.
bioRxiv ; 2023 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-37205450

RESUMO

We previously described a nasally delivered monovalent adenoviral-vectored SARS-CoV-2 vaccine (ChAd-SARS-CoV-2-S, targeting Wuhan-1 spike [S]; iNCOVACC®) that is currently used in India as a primary or booster immunization. Here, we updated the mucosal vaccine for Omicron variants by creating ChAd-SARS-CoV-2-BA.5-S, which encodes for a pre-fusion and surface-stabilized S protein of the BA.5 strain, and then tested monovalent and bivalent vaccines for efficacy against circulating variants including BQ.1.1 and XBB.1.5. Whereas monovalent ChAd-vectored vaccines effectively induced systemic and mucosal antibody responses against matched strains, the bivalent ChAd-vectored vaccine elicited greater breadth. However, serum neutralizing antibody responses induced by both monovalent and bivalent vaccines were poor against the antigenically distant XBB.1.5 Omicron strain and did not protect in passive transfer experiments. Nonetheless, nasally delivered bivalent ChAd-vectored vaccines induced robust antibody and spike-specific memory T cell responses in the respiratory mucosa, and conferred protection against WA1/2020 D614G and Omicron variants BQ.1.1 and XBB.1.5 in the upper and lower respiratory tracts of both mice and hamsters. Our data suggest that a nasally delivered bivalent adenoviral-vectored vaccine induces protective mucosal and systemic immunity against historical and emerging SARS-CoV-2 strains without requiring high levels of serum neutralizing antibody.

7.
ACS Nano ; 16(7): 10443-10455, 2022 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-35749339

RESUMO

The capacity to efficiently deliver the gene-editing enzyme complex to target cells is favored over other forms of gene delivery as it offers one-time hit-and-run gene editing, thus improving precision and safety and reducing potential immunogenicity against edited cells in clinical applications. Here we performed a proof-of-mechanism study and demonstrated that a simian adenoviral vector for DNA delivery can be repurposed as a robust intracellular delivery platform for a functional Cas9/guide RNA (gRNA) complex to recipient cells. In this system, the clinically relevant adenovirus was genetically engineered with a plug-and-display technology based on SpyTag003/SpyCatcher003 coupling chemistry. Under physiological conditions, an off-the-shelf mixture of viral vector with SpyTag003 incorporated into surface capsid proteins and Cas9 fused with SpyCatcher003 led to a rapid titration reaction yielding adenovirus carrying Cas9SpyCatcher003 on the virus surface. The Cas9 fusion protein-conjugated viruses in the presence of a reporter gRNA delivered gene-editing functions to cells with an efficiency comparable to that of a commercial CRISPR/Cas9 transfection reagent. Our data fully validate the adenoviral "piggyback" approach to deliver an intracellularly acting enzyme cargo and, thus, warrant the prospect of engineering tissue-targeted adenovirus carrying Cas9/gRNA for in vivo gene editing.


Assuntos
Edição de Genes , RNA Guia de Cinetoplastídeos , Edição de Genes/métodos , RNA Guia de Cinetoplastídeos/genética , RNA Guia de Cinetoplastídeos/metabolismo , Sistemas CRISPR-Cas/genética , Adenoviridae/genética , Adenoviridae/metabolismo , Capsídeo/metabolismo , Proteína 9 Associada à CRISPR/genética , Proteína 9 Associada à CRISPR/metabolismo
8.
Cell Rep ; 36(4): 109452, 2021 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-34289385

RESUMO

SARS-CoV-2 variants that attenuate antibody neutralization could jeopardize vaccine efficacy. We recently reported the protective activity of an intranasally administered spike protein-based chimpanzee adenovirus-vectored vaccine (ChAd-SARS-CoV-2-S) in animals, which has advanced to human trials. Here, we assessed its durability, dose response, and cross-protective activity in mice. A single intranasal dose of ChAd-SARS-CoV-2-S induced durably high neutralizing and Fc effector antibody responses in serum and S-specific IgG and IgA secreting long-lived plasma cells in the bone marrow. Protection against a historical SARS-CoV-2 strain was observed across a 100-fold vaccine dose range and over a 200-day period. At 6 weeks or 9 months after vaccination, serum antibodies neutralized SARS-CoV-2 strains with B.1.351, B.1.1.28, and B.1.617.1 spike proteins and conferred almost complete protection in the upper and lower respiratory tracts after challenge with variant viruses. Thus, in mice, intranasal immunization with ChAd-SARS-CoV-2-S provides durable protection against historical and emerging SARS-CoV-2 strains.


Assuntos
Anticorpos Neutralizantes/farmacologia , SARS-CoV-2/patogenicidade , Glicoproteína da Espícula de Coronavírus/imunologia , Vacinas Virais/farmacologia , Administração Intranasal/métodos , Animais , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , Anticorpos Antivirais/farmacologia , Camundongos , Vacinação/métodos , Vacinas Virais/imunologia
9.
J Control Release ; 334: 106-113, 2021 06 10.
Artigo em Inglês | MEDLINE | ID: mdl-33872627

RESUMO

For the developing field of gene therapy the successful address of the basic requirement effective gene delivery has remained a critical barrier. In this regard, the "Holy Grail" vector envisioned by the field's pioneers embodied the ability to achieve efficient and specific in vivo gene delivery. Functional linkage of antibody selectivity with viral vector efficiency represented a logical strategy but has been elusive. Here we have addressed this key issue by developing the technical means to pair antibody-based targeting with adenoviral-mediated gene transfer. Our novel method allows efficient and specific gene delivery. Importantly, our studies validated the achievement of this key vectorology mandate in the context of in vivo gene delivery. Vectors capable of effective in vivo delivery embody the potential to dramatically expand the range of successful gene therapy cures.


Assuntos
Adenoviridae , Anticorpos de Domínio Único , Adenoviridae/genética , Técnicas de Transferência de Genes , Engenharia Genética , Terapia Genética , Vetores Genéticos , Anticorpos de Domínio Único/genética
10.
Heliyon ; 7(2): e06210, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33615011

RESUMO

Osteosarcoma is one among the most common neoplasms in dogs. Current treatments show limited efficacy and fail to prevent metastasis. Conditionally replicative adenoviruses (CRAd) replicate exclusively in targeted tumor cells and release new virus particles to infect additional cells. We proposed that OC-CAVE1 (CAV2 with the E1A promoter replaced with the osteocalcin promotor) may also enhance existing immunity against tumors by overcoming immune tolerance via exposure of new epitopes and cytokine signaling. Eleven client-owned dogs with spontaneously occurring osteosarcomas were enrolled in a pilot study. All dogs were injected with OC-CAVE1 following amputation of the affected limb or limb-sparing surgery. Dogs were monitored for viremia and viral shedding. There was minimal virus shedding in urine and feces by the 6th day and no virus was present in blood after 4 weeks. CAV-2 antibody-titers increased in all of the patients, post-CRAd injection. Immunological assays were performed to monitor 1) humoral response against tumors, 2) levels of circulatory CD11c + cells, 3) levels of regulatory T cells, and 4) cytotoxic activity of tumor specific T cells against autologous tumor cells between pre-CRAd administration and 4 weeks post-CRAd administration samples. Administration of the CRAd OC-CAVE1 resulted in alteration of some immune response parameters but did not appear to result in increased survival duration. However, 2 dogs in the study achieved survival times in excess of 1 year. Weak replication of OC-CAVE1 in metastatic cells and delay of chemotherapy following CRAd treatment may contribute to the lack of immune response and improvement in survival time of the clinical patients.

11.
Cell ; 183(1): 169-184.e13, 2020 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-32931734

RESUMO

The coronavirus disease 2019 pandemic has made deployment of an effective vaccine a global health priority. We evaluated the protective activity of a chimpanzee adenovirus-vectored vaccine encoding a prefusion stabilized spike protein (ChAd-SARS-CoV-2-S) in challenge studies with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and mice expressing the human angiotensin-converting enzyme 2 receptor. Intramuscular dosing of ChAd-SARS-CoV-2-S induces robust systemic humoral and cell-mediated immune responses and protects against lung infection, inflammation, and pathology but does not confer sterilizing immunity, as evidenced by detection of viral RNA and induction of anti-nucleoprotein antibodies after SARS-CoV-2 challenge. In contrast, a single intranasal dose of ChAd-SARS-CoV-2-S induces high levels of neutralizing antibodies, promotes systemic and mucosal immunoglobulin A (IgA) and T cell responses, and almost entirely prevents SARS-CoV-2 infection in both the upper and lower respiratory tracts. Intranasal administration of ChAd-SARS-CoV-2-S is a candidate for preventing SARS-CoV-2 infection and transmission and curtailing pandemic spread.


Assuntos
Infecções por Coronavirus/imunologia , Imunogenicidade da Vacina , Pneumonia Viral/imunologia , Vacinas Virais/imunologia , Adenoviridae/genética , Administração Intranasal , Animais , Anticorpos Neutralizantes/sangue , Anticorpos Antivirais/sangue , COVID-19 , Vacinas contra COVID-19 , Chlorocebus aethiops , Infecções por Coronavirus/patologia , Infecções por Coronavirus/prevenção & controle , Feminino , Células HEK293 , Humanos , Injeções Intramusculares , Camundongos , Camundongos Endogâmicos BALB C , Pandemias , Pneumonia Viral/patologia , Mucosa Respiratória/imunologia , Mucosa Respiratória/patologia , Mucosa Respiratória/virologia , Glicoproteína da Espícula de Coronavírus/genética , Glicoproteína da Espícula de Coronavírus/imunologia , Células Vero , Vacinas Virais/administração & dosagem
12.
J Virol ; 94(10)2020 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-32102889

RESUMO

Human adenoviruses have many attractive features for gene therapy applications. However, the high prevalence of preexisting immunity against these viruses in general populations worldwide has greatly limited their clinical utility. In addition, the most commonly used human adenovirus, human adenovirus subgroup C serotype 5 (HAd5), when systemically administered, triggers systemic inflammation and toxicity, with the liver being the most severely affected organ. Here, we evaluated the utility and safety of a new low-seroprevalence gorilla adenovirus (GAd; GC46) as a gene transfer vector in mice. Biodistribution studies revealed that systemically administered GAd had a selective and robust lung endothelial cell (EC) tropism with minimal vector expression throughout many other organs and tissues. Administration of a high dose of GAd accomplished extensive transgene expression in the lung yet elicited no detectable inflammatory histopathology in this organ. Furthermore, GAd, unlike HAd5, did not exhibit hepatotropism or induce liver inflammatory toxicity in mice, demonstrating the exceptional safety profile of the vector vis-à-vis systemic utility. We further demonstrated that the GAd capsid fiber shared the flexibility of the HAd5 equivalent for permitting genetic modification; GAd with the pan-EC-targeting ligand myeloid cell-binding peptide (MBP) incorporated in the capsid displayed a reduced lung tropism and efficiently retargeted gene expression to vascular beds in other organs.IMPORTANCE In the aggregate, our mouse studies suggest that GAd is a promising gene therapy vector that utilizes lung ECs as a source of therapeutic payload production and a highly desirable toxicity profile. Further genetic engineering of the GAd capsid holds the promise of in vivo vector tropism modification and targeting.


Assuntos
Adenoviridae/genética , Capsídeo/metabolismo , Vetores Genéticos , Gorilla gorilla/virologia , Pulmão/metabolismo , Tropismo/imunologia , Infecções por Adenoviridae/patologia , Infecções por Adenoviridae/virologia , Adenovírus Humanos/genética , Animais , Proteínas do Capsídeo/genética , Células Endoteliais , Expressão Gênica , Terapia Genética , Fígado , Pulmão/patologia , Pulmão/virologia , Camundongos , Camundongos Endogâmicos C57BL , Estudos Soroepidemiológicos , Transdução Genética , Transgenes , Vírion
13.
Mol Cancer Ther ; 19(3): 966-971, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31907220

RESUMO

The application of cancer gene therapy has heretofore been restricted to local, or locoregional, neoplastic disease contexts. This is owing to the lack of gene transfer vectors, which embody the requisite target cell selectivity in vivo required for metastatic disease applications. To this end, we have explored novel vector engineering paradigms to adapt adenovirus for this purpose. Our novel strategy exploits three distinct targeting modalities that operate in functional synergy. Transcriptional targeting is achieved via the hROBO4 promoter, which restricts transgene expression to proliferative vascular endothelium. Viral binding is modified by incorporation of an RGD4C peptide in the HI loop of the fiber knob for recognition of cellular integrins. Liver sequestration is mitigated by ablation of factor X binding to the major capsid protein hexon by a serotype swap approach. The combination of these technologies into the context of a single-vector agent represents a highly original approach. Studies in a murine model of disseminated cancer validated the in vivo target cell selectivity of our vector agent. Of note, clear gains in therapeutic index accrued these vector modifications. Whereas there is universal recognition of the value of vector targeting, very few reports have validated its direct utility in the context of cancer gene therapy. In this regard, our article validates the direct gains that may accrue these methods in the stringent delivery context of disseminated neoplastic disease. Efforts to improve vector targeting thus represent a critical direction to fully realize the promise of cancer gene therapy.


Assuntos
Adenoviridae/genética , Biomarcadores Tumorais/genética , Proteínas do Capsídeo/genética , Terapia Genética , Vetores Genéticos/administração & dosagem , Neoplasias Renais/terapia , Neovascularização Patológica/terapia , Animais , Apoptose , Proliferação de Células , Regulação Neoplásica da Expressão Gênica , Humanos , Neoplasias Renais/irrigação sanguínea , Neoplasias Renais/genética , Neoplasias Renais/patologia , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Neovascularização Patológica/genética , Neovascularização Patológica/patologia , Regiões Promotoras Genéticas , Receptores de Superfície Celular/genética , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto
14.
Cell Rep ; 28(10): 2634-2646.e4, 2019 09 03.
Artigo em Inglês | MEDLINE | ID: mdl-31484074

RESUMO

The teratogenic potential of Zika virus (ZIKV) has made the development of an effective vaccine a global health priority. Here, we generate two gorilla adenovirus-based ZIKV vaccines that encode for pre-membrane (prM) and envelope (E) proteins (GAd-Zvp) or prM and the ectodomain of E protein (GAd-Eecto). Both vaccines induce humoral and cell-mediated immune responses and prevent lethality after ZIKV challenge in mice. Protection is antibody dependent, CD8+ T cell independent, and for GAd-Eecto requires the complement component C1q. Immunization of GAd-Zvp induces antibodies against a key neutralizing epitope on domain III of E protein and confers durable protection as evidenced by memory B and long-lived plasma cell responses and challenge studies 9 months later. In two models of ZIKV infection during pregnancy, GAd-Zvp prevents maternal-to-fetal transmission. The gorilla adenovirus-based vaccine platform encoding full-length prM and E genes is a promising candidate for preventing congenital ZIKV syndrome and possibly infection by other flaviviruses.


Assuntos
Adenoviridae/imunologia , Gorilla gorilla/virologia , Imunidade , Zika virus/imunologia , Animais , Formação de Anticorpos/imunologia , Linfócitos B/imunologia , Feminino , Feto/patologia , Feto/virologia , Humanos , Memória Imunológica , Camundongos Endogâmicos C57BL , Gravidez , Linfócitos T/imunologia , Vacinas Virais/imunologia
15.
J Ovarian Res ; 12(1): 18, 2019 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-30767772

RESUMO

BACKGROUND: Virotherapy represents a promising approach for ovarian cancer. In this regard, conditionally replicative adenovirus (CRAd) has been translated to the context of human clinical trials. Advanced design of CRAds has sought to exploit their capacity to induce anti-tumor immunization by configuring immunoregulatory molecule within the CRAd genome. Unfortunately, employed murine xenograft models do not allow full analysis of the immunologic activity linked to CRAd replication. RESULTS: We developed CRAds based on the Ad5/3-Delta24 design encoding cytokines. Whereas the encoded cytokines did not impact adversely CRAd-induced oncolysis in vitro, no gain in anti-tumor activity was noted in immune-incompetent murine models with human ovarian cancer xenografts. On this basis, we explored the potential utility of the murine syngeneic immunocompetent ID8 ovarian cancer model. Of note, the ID8 murine ovarian cancer cell lines exhibited CRAd-mediated cytolysis. The use of this model now enables the rational design of oncolytic agents to achieve anti-tumor immunotherapy. CONCLUSIONS: Limits of widely employed murine xenograft models of ovarian cancer limit their utility for design and study of armed CRAd virotherapy agents. The ID8 model exhibited CRAd-induced oncolysis. This feature predicate its potential utility for the study of CRAd-based virotherapy agents.


Assuntos
Adenoviridae/genética , Modelos Animais de Doenças , Terapia Viral Oncolítica/métodos , Vírus Oncolíticos/genética , Neoplasias Ovarianas/terapia , Adenoviridae/fisiologia , Animais , Linhagem Celular Tumoral , Sobrevivência Celular , Feminino , Vetores Genéticos , Humanos , Camundongos , Vírus Oncolíticos/fisiologia , Neoplasias Ovarianas/virologia , Proteínas Supressoras de Tumor/genética , Replicação Viral , Ensaios Antitumorais Modelo de Xenoenxerto
16.
Vaccine ; 36(20): 2799-2808, 2018 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-29657070

RESUMO

INTRODUCTION: Cellular and humoral immune responses are both involved in protection against Plasmodium infections. The only malaria vaccine available, RTS,S, primarily induces short-lived antibodies and targets only a pre-erythrocytic stage antigen. Inclusion of erythrocytic stage targets and enhancing cellular immunogenicity are likely necessary for developing an effective second-generation malaria vaccine. Adenovirus vectors have been used to improve the immunogenicity of protein-based vaccines. However, the clinical assessment of adenoviral-vectored malaria vaccines candidates has shown the induction of robust Plasmodium-specific CD8+ but not CD4+ T cells. Signal peptides (SP) have been used to enhance the immunogenicity of DNA vaccines, but have not been tested in viral vector vaccine platforms. OBJECTIVES: The objective of this study was to determine if the addition of the SP derived from the murine IgGκ light chain within a recombinant adenovirus vector encoding a multistage P. vivax vaccine candidate could improve the CD4+ T cell response. METHODS: In this proof-of-concept study, we immunized CB6F1/J mice with either the recombinant simian adenovirus 36 vector containing the SP (SP-SAd36) upstream from a transgene encoding a chimeric P. vivax multistage protein or the same SAd36 vector without the SP. Mice were subsequently boosted twice with the corresponding recombinant proteins emulsified in Montanide ISA 51 VG. Immunogenicity was assessed by measurement of antibody quantity and quality, and cytokine production by T cells after the final immunization. RESULTS: The SP-SAd36 immunization regimen induced significantly higher antibody avidity against the chimeric P. vivax proteins tested and higher frequencies of IFN-γ and IL-2 CD4+ and CD8+ secreting T cells, when compared to the unmodified SAd36 vector. CONCLUSIONS: The addition of the murine IgGκ signal peptide significantly enhances the immunogenicity of a SAd36 vectored P. vivax multi-stage vaccine candidate in mice. The potential of this approach to improve upon existing viral vector vaccine platforms warrants further investigation.


Assuntos
Imunidade Celular , Imunogenicidade da Vacina , Imunoglobulina G/imunologia , Cadeias kappa de Imunoglobulina/imunologia , Vacinas Antimaláricas/imunologia , Malária Vivax/prevenção & controle , Plasmodium vivax/imunologia , Sinais Direcionadores de Proteínas , Adenovirus dos Símios , Animais , Anticorpos Antiprotozoários/imunologia , Linfócitos T CD4-Positivos/imunologia , Vetores Genéticos , Camundongos , Proteínas Recombinantes/genética , Proteínas Recombinantes/imunologia
17.
Cancer Gene Ther ; 25(1-2): 27-38, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29242639

RESUMO

Adenoviral (Ad) vector vaccines represent one of the most promising modern vaccine platforms, and Ad vector vaccines are currently being investigated in human clinical trials for infectious disease and cancer. Our studies have shown that specific targeting of adenovirus to dendritic cells dramatically enhanced vaccine efficacy. However, this was achieved using a molecular adapter, thereby necessitating a two component vector approach. To address the mandates of clinical translation of our strategy, we here sought to accomplish the goal of DC targeting with a single-component adenovirus vector approach. To redirect the specificity of Ad vector vaccines, we replaced the Ad fiber knob with fiber-fibritin chimeras fused to DC1.8, a single-domain antibody (sdAb) specific for murine immature DC. We engineered a fiber-fibritin-sdAb chimeric molecule using the coding sequence for DC1.8, and then replaced the native Ad5 fiber knob sequence by homologous recombination. The resulting Ad5 virus, Ad5FF1.8, expresses the chimeric fiber-fibritin sdAb chimera. Infection with Ad5FF1.8 dramatically enhances transgene expression in DC2.4 dendritic cells compared with infection with native Ad5. Ad5FF1.8 infection of bone marrow-derived DC demonstrates that Ad5FF1.8 selectively infects immature DC consistent with the known specificity of DC1.8. Thus, sdAb can be used to selectively redirect the tropism of Ad5 vector vaccines, providing the opportunity to engineer Ad vector vaccines that are specifically targeted to DC, or specific DC subsets.


Assuntos
Adenoviridae , Células Dendríticas/imunologia , Vetores Genéticos , Vacinas , Adenoviridae/genética , Adenoviridae/imunologia , Animais , Vetores Genéticos/genética , Vetores Genéticos/imunologia , Camundongos , Anticorpos de Cadeia Única/genética , Anticorpos de Cadeia Única/imunologia , Vacinas/genética , Vacinas/imunologia , Proteínas Virais/genética , Proteínas Virais/imunologia
18.
PLoS One ; 12(12): e0190125, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29267342

RESUMO

Clinical application of tumor necrosis factor-related apoptosis-inducing ligand (TRAIL)-based cancer therapeutics has not reached optimal potencies in part due to inadequate drug stability and inefficiencies in cancer-selective drug delivery. As such, innovative strategies regarding drug design and delivery are of utmost importance to achieve improved treatment results. With our current study, we aimed at exploring the groundwork for a two-stage targeting concept, which is based on the intrinsic tumor homing capacity of mesenchymal stem cells (MSCs) as cellular drug factories for the in situ production of our newly designed and biomarker-targeted TRAIL-based TR3 therapeutics. Since MSCs are primary cells, capable in vitro of only a limited number of cell divisions, identification of suitable strategies for their efficient genetic manipulation is of critical importance. We chose adenoviral (Ad) vectors as a transduction vehicle due to its ability to infect dividing and non-dividing cells and because of their limited restrictions regarding the packaging capacity of their genetic payload. In order to enhance the transduction efficacy of MSCs using Ad5 wild-type-based vectors, we tested a variety of fiber knob modifications on a panel of patient-derived MSC lines established from adipose tissue. We identified Ad5pK7, an Ad5 vector containing a polylysine fiber knob modification, exhibiting the highest transduction rates across a panel of 16 patient-derived MSC lines. We further demonstrated that MSCs could be efficiently transduced with an Ad5pK7 vector containing membrane-anchored and secreted TR3 expression units, including the MUC16 (CA125)-targeted variant Meso64-TR3. In both in vitro and in vivo experiments, MSC-derived Meso64-TR3 was far more potent on MUC16-expressing ovarian cancer compared to its non-targeted TR3 counterpart. Our findings thus provide the foundation to initiate further preclinical investigations on MSC-mediated treatment options in ovarian cancer using biomarker-targeted TR3-based biologics.


Assuntos
Adenoviridae/genética , Produtos Biológicos/uso terapêutico , Células-Tronco Mesenquimais/citologia , Neoplasias Ovarianas/terapia , Ligante Indutor de Apoptose Relacionado a TNF/uso terapêutico , Transdução Genética , Feminino , Humanos , Neoplasias Ovarianas/patologia
19.
Vaccine ; 35(24): 3239-3248, 2017 05 31.
Artigo em Inglês | MEDLINE | ID: mdl-28483199

RESUMO

Malaria remains a considerable burden on public health. In 2015, the WHO estimates there were 212 million malaria cases causing nearly 429,000 deaths globally. A highly effective malaria vaccine is needed to reduce the burden of this disease. We have developed an experimental vaccine candidate (PyCMP) based on pre-erythrocytic (CSP) and erythrocytic (MSP1) stage antigens derived from the rodent malaria parasite P. yoelii. Our protein-based vaccine construct induces protective antibodies and CD4+ T cell responses. Based on evidence that viral vectors increase CD8+ T cell-mediated immunity, we also have tested heterologous prime-boost immunization regimens that included human adenovirus serotype 5 vector (Ad5), obtaining protective CD8+ T cell responses. While Ad5 is commonly used for vaccine studies, the high prevalence of pre-existing immunity to Ad5 severely compromises its utility. Here, we report the use of the novel simian adenovirus 36 (SAd36) as a candidate for a vectored malaria vaccine since this virus is not known to infect humans, and it is not neutralized by anti-Ad5 antibodies. Our study shows that the recombinant SAd36PyCMP can enhance specific CD8+ T cell response and elicit similar antibody titers when compared to an immunization regimen including the recombinant Ad5PyCMP. The robust immune responses induced by SAd36PyCMP are translated into a lower parasite load following P. yoelii infectious challenge when compared to mice immunized with Ad5PyCMP.


Assuntos
Adenovirus dos Símios/genética , Vacinas Antimaláricas/imunologia , Malária/prevenção & controle , Proteínas de Protozoários/imunologia , Adenovirus dos Símios/imunologia , Animais , Anticorpos Antiprotozoários/sangue , Antígenos de Protozoários/imunologia , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD8-Positivos/imunologia , Vetores Genéticos/imunologia , Humanos , Imunidade Celular , Imunização Secundária , Malária/imunologia , Vacinas Antimaláricas/administração & dosagem , Vacinas Antimaláricas/genética , Camundongos
20.
Clin Vaccine Immunol ; 23(9): 774-84, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27413067

RESUMO

Clostridium difficile infection (CDI), a leading cause of nosocomial infection, is a serious disease in North America, Europe, and Asia. CDI varies greatly from asymptomatic carriage to life-threatening diarrhea, toxic megacolon, and toxemia. The incidence of community-acquired infection has increased due to the emergence of hypervirulent antibiotic-resistant strains. These new strains contribute to the frequent occurrence of disease relapse, complicating treatment, increasing hospital stays, and increasing morbidity and mortality among patients. Therefore, it is critical to develop new therapeutic approaches that bypass the development of antimicrobial resistance and avoid disruption of gut microflora. Here, we describe the construction of a single heteromultimeric VHH-based neutralizing agent (VNA) that targets the two primary virulence factors of Clostridium difficile, toxins A (TcdA) and B (TcdB). Designated VNA2-Tcd, this agent has subnanomolar toxin neutralization potencies for both C. difficile toxins in cell assays. When given systemically by parenteral administration, VNA2-Tcd protected against CDI in gnotobiotic piglets and mice and to a lesser extent in hamsters. Protection from CDI was also observed in gnotobiotic piglets treated by gene therapy with an adenovirus that promoted the expression of VNA2-Tcd.


Assuntos
Anticorpos Antibacterianos/uso terapêutico , Anticorpos Neutralizantes/uso terapêutico , Antitoxinas/uso terapêutico , Clostridioides difficile/isolamento & purificação , Infecções por Clostridium/microbiologia , Infecções por Clostridium/terapia , Adenoviridae/genética , Animais , Proteínas de Bactérias/antagonistas & inibidores , Toxinas Bacterianas/antagonistas & inibidores , Modelos Animais de Doenças , Portadores de Fármacos , Avaliação Pré-Clínica de Medicamentos , Enterotoxinas/antagonistas & inibidores , Terapia Genética/métodos , Mesocricetus , Camundongos Endogâmicos C57BL , Suínos , Resultado do Tratamento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA