Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Int Microbiol ; 2024 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-39117894

RESUMO

This study evaluated the antimicrobial activity, resistance development, and synergistic potential of cell-free supernatant (CFSs) derived from Levilactobacillus brevis (Lb-CFS) and Lactiplantibacillus plantarum (Lp-CFS) against Klebsiella pneumoniae. Both CFSs exhibited potent growth inhibition, with minimum inhibitory concentrations (MICs) of 128 µg/mL and 64 µg/mL for Lb-CFS and Lp-CFS, respectively, and demonstrated dose-dependent bactericidal activity, achieving complete bacterial eradication at minimum bactericidal concentrations (MBC) within 6 h. The CFSs suppressed the expression of virulence genes (galF, wzi, and manC) and biofilm formation in a dose-dependent manner. Synergistic interactions were observed when combining CFSs with antibiotics, resulting in 2- to fourfold reductions in antibiotic MICs and MBCs. Notably, adaptive evolution experiments revealed significantly slower resistance development in K. pneumoniae against CFSs (twofold MIC/MBC increase) compared to antibiotics (16- to 128-fold increase) after 21 days. Furthermore, CFS-adapted strains exhibited increased antibiotic susceptibility, while antibiotic-adapted strains displayed cross-resistance to multiple antibiotics. No cross-resistance occurred between Lb-CFS and Lp-CFS, suggesting distinct adaptive mechanisms. These findings highlight the potential of probiotic-derived CFSs as effective antimicrobials with a lower propensity for inducing rapid resistance compared to conventional antibiotics, suggesting their promise in combating multidrug-resistant infections.

2.
Prostate ; 2024 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-39154281

RESUMO

BACKGROUND: A specific type of prostate cancer (PC) that exhibits neuroendocrine (NE) differentiation is known as NEPC. NEPC has little to no response to androgen deprivation therapy and is associated with the development of metastatic castration-resistant PC (CRPC), which has an extremely poor prognosis. Our understanding of genetic drivers and activated pathways in NEPC is limited, which hinders precision medicine approaches. L1 cell adhesion molecule (L1CAM) is known to play an oncogenic role in metastatic cancers, including CRPC. However, the impact of L1CAM on NEPC progression remains elusive. METHODS: L1CAM expression level was investigated using public gene expression databases of PC cohorts and patient-derived xenograft models. L1CAM knockdown was performed in different PC cells to study in vitro cell functions. A subline of CRPC cell line CWR22Rv1 was established after long-term exposure to abiraterone to induce NE differentiation. The androgen receptor-negative cell line PC3 was cultured under the tumor sphere-forming condition to enrich cancer stemness features. Several oxidative stress inducers were tested on PC cells to observe L1CAM-mediated gene expression and cell death. RESULTS: L1CAM expression was remarkably high in NEPC compared to CRPC or adenocarcinoma tumors. L1CAM was also correlated with NE marker expressions and associated with the adenocarcinoma-to-NEPC progression in gene expression databases and CRPC cells with NE differentiation. L1CAM also promoted cancer stemness and NE phenotypes in PC3 cells under cancer stemness enrichment. L1CAM was also identified as a reactive oxygen species-induced gene, by which L1CAM counteracted CRPC cell death triggered by ionizing radiation. CONCLUSIONS: Our results unveiled a new role of L1CAM in the acquisition of the NE phenotype in PC, contributing to the NE differentiation-related therapeutic resistance of CRPC.

3.
J Sci Food Agric ; 2024 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-38924118

RESUMO

BACKGROUND: Kombucha is a widely consumed fermented beverage produced by fermenting sweet tea with a symbiotic culture of bacteria and yeast (SCOBY). The dynamic nature of microbial communities in SCOBY may pose challenges to production scale-up due to unpredictable variations in microbial composition. Using identified starter strains is a novel strategy to control microorganism composition, thereby ensuring uniform fermentation quality across diverse batches. However, challenges persist in the cultivation and maintenance of these microbial strains. This study examined the potential of microencapsulated kombucha fermentation starter cultures, specifically Komagataeibacter saccharivorans, Levilactobacillus brevis and Saccharomyces cerevisiae, through spray-drying and freeze-drying. RESULTS: Maltodextrin and gum arabic-maltodextrin were employed as carrier agents. Our results revealed that both spray-dried and freeze-dried samples adhered to physicochemical criteria, with low moisture content (2.18-7.75%) and relatively high solubility (65.75-87.03%) which are appropriate for food application. Freeze-drying demonstrated greater effectiveness in preserving bacterial strain viability (88.30-90.21%) compared to spray drying (74.92-78.66%). Additionally, the freeze-dried starter strains demonstrated similar efficacy in facilitating kombucha fermentation, compared to the SCOBY group. The observations included pH reduction, acetic acid production, α-amylase inhibition and elevated total polyphenol and flavonoid content. Moreover, the biological activity, including antioxidant potential and in vitro tyrosinase inhibition activity, was enhanced in the same pattern. The freeze-dried strains exhibited consistent kombucha fermentation capabilities over a three-month preservation, regardless of storage temperature at 30 or 4 °C. CONCLUSION: These findings highlight the suitability of freeze-dried starter cultures for kombucha production, enable microbial composition control, mitigate contamination risks and ensure consistent product quality. © 2024 Society of Chemical Industry.

4.
J Exp Clin Cancer Res ; 43(1): 130, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38689348

RESUMO

BACKGROUND: Medulloblastomas (MBs) are one of the most common malignant brain tumor types in children. MB prognosis, despite improvement in recent years, still depends on clinical and biological risk factors. Metastasis is the leading cause of MB-related deaths, which highlights an unmet need for risk stratification and targeted therapy to improve clinical outcomes. Among the four molecular subgroups, sonic-hedgehog (SHH)-MB harbors clinical and genetic heterogeneity with a subset of high-risk cases. Recently, long non-coding (lnc)RNAs were implied to contribute to cancer malignant progression, but their role in MB remains unclear. This study aimed to identify pro-malignant lncRNAs that have prognostic and therapeutic significance in SHH-MB. METHODS: The Daoy SHH-MB cell line was engineered for ectopic expression of MYCN, a genetic signature of SHH-MB. MYCN-associated lncRNA genes were identified using RNA-sequencing data and were validated in SHH-MB cell lines, MB tissue samples, and patient cohort datasets. SHH-MB cells with genetic manipulation of the candidate lncRNA were evaluated for metastatic phenotypes in vitro, including cell migration, invasion, sphere formation, and expressions of stemness markers. An orthotopic xenograft mouse model was used to evaluate metastasis occurrence and survival. Finally, bioinformatic screening and in vitro assays were performed to explore downstream mechanisms. RESULTS: Elevated lncRNA LOXL1-AS1 expression was identified in MYCN-expressing Daoy cells and MYCN-amplified SHH-MB tumors, and was significantly associated with lower survival in SHH-MB patients. Functionally, LOXL1-AS1 promoted SHH-MB cell migration and cancer stemness in vitro. In mice, MYCN-expressing Daoy cells exhibited a high metastatic rate and adverse effects on survival, both of which were suppressed under LOLX1-AS1 perturbation. Integrative bioinformatic analyses revealed associations of LOXL1-AS1 with processes of cancer stemness, cell differentiation, and the epithelial-mesenchymal transition. LOXL1-AS1 positively regulated the expression of transforming growth factor (TGF)-ß2. Knockdown of TGF-ß2 in SHH-MB cells significantly abrogated their LOXL1-AS1-mediated prometastatic functions. CONCLUSIONS: This study proved the functional significance of LOXL1-AS1 in SHH-MB metastasis by its promotion of TGF-ß2-mediated cancer stem-like phenotypes, providing both prognostic and therapeutic potentials for targeting SHH-MB metastasis.


Assuntos
Proteínas Hedgehog , Meduloblastoma , Células-Tronco Neoplásicas , Humanos , Meduloblastoma/genética , Meduloblastoma/patologia , Meduloblastoma/metabolismo , Animais , Camundongos , Células-Tronco Neoplásicas/metabolismo , Células-Tronco Neoplásicas/patologia , Proteínas Hedgehog/metabolismo , Proteínas Hedgehog/genética , Metástase Neoplásica , Fenótipo , Feminino , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Linhagem Celular Tumoral , Masculino , Neoplasias Cerebelares/genética , Neoplasias Cerebelares/patologia , Neoplasias Cerebelares/metabolismo , Prognóstico , Movimento Celular
5.
J Microbiol Biotechnol ; 34(3): 673-680, 2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38346818

RESUMO

Kombucha, a fermented beverage, is gaining popularity due to its numerous beneficial health effects. Various substrates such as herbs, fruits, flowers, and vegetables, have been used for kombucha fermentation in order to enhance the flavor, aroma, and nutritional composition. This study aims to investigate the potential suitability of cascara as a novel ingredient for kombucha production. Our findings suggested that cascara is a suitable substrate for kombucha production. Fermentation elevated the total phenolic and flavonoid content in cascara, which enhanced the antioxidant, antibacterial, and prebiotic characteristics of the product. Furthermore, the accumulation of acetic acid-induced the pH lowering reached 2.7 after 14 days of fermentation, which achieved the microbiological safety of the product. Moreover, 14 days of fermentation resulted in a balanced amalgamation of acidity, sweetness, and fragrance according to sensory evaluation. Our findings not only highlight the potential of cascara kombucha as a novel substrate for kombucha production but also contribute to repurposing coffee by-products, promoting environmentally friendly and sustainable agricultural development.


Assuntos
Coffea , Coffea/metabolismo , Antioxidantes/metabolismo , Fenóis , Flavonoides , Ácido Acético , Fermentação
6.
J Exp Clin Cancer Res ; 42(1): 346, 2023 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-38124207

RESUMO

BACKGROUND: Atypical teratoid rhabdoid tumors (ATRT) is a rare but aggressive malignancy in the central nervous system, predominantly occurring in early childhood. Despite aggressive treatment, the prognosis of ATRT patients remains poor. RRM2, a subunit of ribonucleotide reductase, has been reported as a biomarker for aggressiveness and poor prognostic conditions in several cancers. However, little is known about the role of RRM2 in ATRT. Uncovering the role of RRM2 in ATRT will further promote the development of feasible strategies and effective drugs to treat ATRT. METHODS: Expression of RRM2 was evaluated by molecular profiling analysis and was confirmed by IHC in both ATRT patients and PDX tissues. Follow-up in vitro studies used shRNA knockdown RRM2 in three different ATRT cells to elucidate the oncogenic role of RRM2. The efficacy of COH29, an RRM2 inhibitor, was assessed in vitro and in vivo. Western blot and RNA-sequencing were used to determine the mechanisms of RRM2 transcriptional activation in ATRT. RESULTS: RRM2 was found to be significantly overexpressed in multiple independent ATRT clinical cohorts through comprehensive bioinformatics and clinical data analysis in this study. The expression level of RRM2 was strongly correlated with poor survival rates in patients. In addition, we employed shRNAs to silence RRM2, which led to significantly decrease in ATRT colony formation, cell proliferation, and migration. In vitro experiments showed that treatment with COH29 resulted in similar but more pronounced inhibitory effect. Therefore, ATRT orthotopic mouse model was utilized to validate this finding, and COH29 treatment showed significant tumor growth suppression and prolong overall survival. Moreover, we provide evidence that COH29 treatment led to genomic instability, suppressed homologous recombinant DNA damage repair, and subsequently induced ATRT cell death through apoptosis in ATRT cells. CONCLUSIONS: Collectively, our study uncovers the oncogenic functions of RRM2 in ATRT cell lines, and highlights the therapeutic potential of targeting RRM2 in ATRT. The promising effect of COH29 on ATRT suggests its potential suitability for clinical trials as a novel therapeutic approach for ATRT.


Assuntos
Neoplasias do Sistema Nervoso Central , Tumor Rabdoide , Animais , Pré-Escolar , Humanos , Camundongos , Apoptose , Neoplasias do Sistema Nervoso Central/metabolismo , Reparo do DNA , Inibidores Enzimáticos/uso terapêutico , Tumor Rabdoide/tratamento farmacológico , Tumor Rabdoide/genética , Tumor Rabdoide/metabolismo
7.
Prev Nutr Food Sci ; 28(4): 502-513, 2023 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-38188087

RESUMO

Kombucha is a widely consumed fermented tea beverage with diverse health benefits. In a previous study, we demonstrated that the use of cascara as a substrate results in a special kombucha beverage with high bioactivity. Traditional kombucha fermentation using a symbiotic culture of bacteria and yeast (SCOBY) can lead to inconsistent product quality because of the lack of control over microbial composition. We successfully isolated and identified yeast and bacteria, including Saccharomyces cerevisiae, Komagataeibacter rhaeticus, and Lactobacillus brevis that are appropriate starter cultures for cascara kombucha fermentation. We also demonstrated that a supplementation with lactic acid bacteria (LAB) and a mixture of S. cerevisiae and K. rhaeticus resulted in higher total polyphenol and flavonoid content of cascara kombucha compared with the traditionally fermented product using SCOBY as the inoculum. The free radical scavenging activity, inhibitory effects on α-amylase, tyrosinase activity, and antibacterial properties of cascara kombucha were also enhanced as a result of LAB supplement. These findings provide valuable insights into the controlled microbiological composition required for the fermentation of cascara kombucha, thereby ensuring consistent quality and enhanced bioactivity of the product. Further, the use of cascara as a substrate for kombucha production not only offers various health benefits and biological effects, but also repurposes by-products from the coffee industry, which contributes to sustainable development and is eco-friendly.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA