Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
PeerJ ; 12: e17056, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38436036

RESUMO

Balance involves several sensory modalities including vision, proprioception and the vestibular system. This study aims to investigate vestibulospinal activation elicited by tone burst stimulation in various muscles and how head position influences these responses. We recorded electromyogram (EMG) responses in different muscles (sternocleidomastoid-SCM, cervical erector spinae-ES-C, lumbar erector spinae-ES-L, gastrocnemius-G, and tibialis anterior-TA) of healthy participants using tone burst stimulation applied to the vestibular system. We also evaluated how head position affected the responses. Tone burst stimulation elicited reproducible vestibulospinal reflexes in the SCM and ES-C muscles, while responses in the distal muscles (ES-L, G, and TA) were less consistent among participants. The magnitude and polarity of the responses were influenced by the head position relative to the cervical spine. When the head was rotated or tilted, the polarity of the vestibulospinal responses changed, indicating the integration of vestibular and proprioceptive inputs in generating these reflexes. Overall, our study provides valuable insights into the complexity of vestibulospinal reflexes and their modulation by head position. However, the high variability in responses in some muscles limits their clinical application. These findings may have implications for future research in understanding vestibular function and its role in posture and movement control.


Assuntos
Orientação Espacial , Vestíbulo do Labirinto , Humanos , Percepção Espacial , Vértebras Cervicais , Cafeína , Músculos do Pescoço , Niacinamida
2.
NPJ Microgravity ; 10(1): 5, 2024 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-38212311

RESUMO

This study investigates the impact of gravity on lower limb muscle coordination during pedaling. It explores how pedaling behaviors, kinematics, and muscle activation patterns dynamically adapts to changes in gravity and resistance levels. The experiment was conducted in parabolic flights, simulating microgravity, hypergravity (1.8 g), and normogravity conditions. Participants pedaled on an ergometer with varying resistances. The goal was to identify potential changes in muscle synergies and activation strategies under different gravitational contexts. Results indicate that pedaling cadence adjusted naturally in response to both gravity and resistance changes. Cadence increased with higher gravity and decreased with higher resistance levels. Muscular activities were characterized by two synergies representing pull and push phases of pedaling. The timing of synergy activation was influenced by gravity, with a delay in activation observed in microgravity compared to other conditions. Despite these changes, the velocity profile of pedaling remained stable across gravity conditions. The findings strongly suggest that the CNS dynamically manages the shift in body weight by finely tuning muscular coordination, thereby ensuring the maintenance of a stable motor output. Furthermore, electromyography analysis suggest that neuromuscular discharge frequencies were not affected by gravity changes. This implies that the types of muscle fibers recruited during exercise in modified gravity are similar to those used in normogravity. This research has contributed to a better understanding of how the human locomotor system responds to varying gravitational conditions, shedding light on the potential mechanisms underlying astronauts' gait changes upon returning from space missions.

3.
Sci Rep ; 13(1): 22332, 2023 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-38102180

RESUMO

A partial loss of effectiveness of deep brain stimulation of the ventral intermediate nucleus of the thalamus (VIM) has been reported in some patients with essential tremor (ET), possibly due to habituation to permanent stimulation. This study focused on the evolution of VIM local-field potentials (LFPs) data over time to assess the long-term feasibility of closed-loop therapy based on thalamic activity. We performed recordings of thalamic LFPs in 10 patients with severe ET using the ACTIVA™ PC + S (Medtronic plc.) allowing both recordings and stimulation in the same region. Particular attention was paid to describing the evolution of LFPs over time from 3 to 24 months after surgery when the stimulation was Off. We demonstrated a significant decrease in high-beta LFPs amplitude during movements inducing tremor in comparison to the rest condition 3 months after surgery (1.91 ± 0.89 at rest vs. 1.27 ± 1.37 µV2/Hz during posture/action for N = 8/10 patients; p = 0.010), 12 months after surgery (2.92 ± 1.75 at rest vs. 2.12 ± 1.78 µV2/Hz during posture/action for N = 7/10 patients; p = 0.014) and 24 months after surgery (2.32 ± 0.35 at rest vs 0.75 ± 0.78 µV2/Hz during posture/action for 4/6 patients; p = 0.017). Among the patients who exhibited a significant decrease of high-beta LFP amplitude when stimulation was Off, this phenomenon was observed at least twice during the follow-up. Although the extent of this decrease in high-beta LFPs amplitude during movements inducing tremor may vary over time, this thalamic biomarker of movement could potentially be usable for closed-loop therapy in the long term.


Assuntos
Estimulação Encefálica Profunda , Tremor Essencial , Humanos , Tremor Essencial/terapia , Tremor/terapia , Tálamo/cirurgia , Movimento/fisiologia , Resultado do Tratamento
4.
J Neurophysiol ; 123(5): 2010-2023, 2020 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-32319843

RESUMO

Most studies addressing the role of vestibulospinal reflexes in balance maintenance have mainly focused on responses in the lower limbs, while limited attention has been paid to the output in trunk and back muscles. To address this issue, we tested whether electromyographic (EMG) responses to galvanic vestibular stimulations (GVS) were modulated similarly in back and leg muscles, in situations where the leg muscle responses to GVS are known to be attenuated. Body sway and surface EMG signals were recorded in the paraspinal and limb muscles of humans (n = 19) under three complementary conditions. During treadmill locomotion, EMG responses in the lower limbs were observed only during stance, whereas responses in trunk muscles were observed during all phases of the locomotor cycle. During upright standing, a slight head contact abolished the responses in the lower limbs, while the responses remained present in back muscles. Similarly, during parabolic flight-induced microgravity, EMG responses in lower limb muscles were suppressed but remained in axial muscles despite the abolished gravitational otolithic drive. Our results suggest a differentiated control of axial and appendicular muscles when a perturbation is detected by vestibular inputs. The persistence and low modulation of axial muscle responses suggests that a hard-wired reflex is functionally efficient to maintain posture. By contrast, the ankle responses to GVS occur only in balance tasks when proprioceptive feedback is congruent. This study using GVS in microgravity is the first to present an approach delineating feedforward vestibular control in unconstrained environment.NEW & NOTEWORTHY This study addresses the extent of conservation of trunk muscle control in humans. Results show that galvanic vestibular stimulation-evoked vestibular responses in trunk muscles remain strong in conditions where leg muscle responses are downmodulated (walking, standing, microgravity). This suggests a phylogenetically conserved blueprint of sensorimotor organization, with strongly hardwired vestibulospinal inputs to axial motoneurons and a higher degree of flexibility in the later emerging limb control system.


Assuntos
Perna (Membro)/fisiologia , Neurônios Motores/fisiologia , Músculo Esquelético/fisiologia , Equilíbrio Postural/fisiologia , Reflexo/fisiologia , Medula Espinal/fisiologia , Vestíbulo do Labirinto/fisiologia , Adulto , Estimulação Elétrica , Eletromiografia , Humanos , Músculos Paraespinais/fisiologia
5.
J Autism Dev Disord ; 47(11): 3321-3332, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28748333

RESUMO

Rubinstein-Taybi syndrome (RTS) is a rare genetic disease that associates intellectual disability with somatic characteristics. We have conducted a study of the overall motor abilities of RTS participants. Static postural performance as well as gait parameters were somewhat decreased, although not significantly compared to typically developing (TD) participants. In contrast, the motor skills requiring a high level of visuomotor coordination were considerably degraded in RTS participants compared to TD participants. We also found that cognitive status was significantly correlated with performance for tasks requiring a higher level of visuomotor coordination in RTS but not TD participants. Our study demonstrates a reduction in the motor performance of RTS participants and a link between the level of intellectual disability and motor capacities.


Assuntos
Destreza Motora , Síndrome de Rubinstein-Taybi/diagnóstico , Adolescente , Criança , Cognição , Feminino , Humanos , Locomoção , Masculino , Postura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA