Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Mol Biol Evol ; 41(2)2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38285634

RESUMO

Rainforest hunter-gatherers from Southeast Asia are characterized by specific morphological features including a particularly dark skin color (D), short stature (S), woolly hair (W), and the presence of steatopygia (S)-fat accumulation localized in the hips (DSWS phenotype). Based on previous evidence in the Andamanese population, we first characterized signatures of adaptive natural selection around the calcium-sensing receptor gene in Southeast Asian rainforest groups presenting the DSWS phenotype and identified the R990G substitution (rs1042636) as a putative adaptive variant for experimental follow-up. Although the calcium-sensing receptor has a critical role in calcium homeostasis by directly regulating the parathyroid hormone secretion, it is expressed in different tissues and has been described to be involved in many biological functions. Previous works have also characterized the R990G substitution as an activating polymorphism of the calcium-sensing receptor associated with hypocalcemia. Therefore, we generated a knock-in mouse for this substitution and investigated organismal phenotypes that could have become adaptive in rainforest hunter-gatherers from Southeast Asia. Interestingly, we found that mouse homozygous for the derived allele show not only lower serum calcium concentration but also greater body weight and fat accumulation, probably because of enhanced preadipocyte differentiation and lipolysis impairment resulting from the calcium-sensing receptor activation mediated by R990G. We speculate that such differential features in humans could have facilitated the survival of hunter-gatherer groups during periods of nutritional stress in the challenging conditions of the Southeast Asian tropical rainforests.


Assuntos
Polimorfismo Genético , Receptores de Detecção de Cálcio , Animais , Humanos , Camundongos , Cálcio , Fenótipo , Receptores de Detecção de Cálcio/genética , Seleção Genética
2.
Evol Hum Sci ; 5: e9, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37587930

RESUMO

Here we investigate the effects of extensive sociality and mobility on the oral microbiome of 138 Agta hunter-gatherers from the Philippines. Our comparisons of microbiome composition showed that the Agta are more similar to Central African BaYaka hunter-gatherers than to neighbouring farmers. We also defined the Agta social microbiome as a set of 137 oral bacteria (only 7% of 1980 amplicon sequence variants) significantly influenced by social contact (quantified through wireless sensors of short-range interactions). We show that large interaction networks including strong links between close kin, spouses and even unrelated friends can significantly predict bacterial transmission networks across Agta camps. Finally, we show that more central individuals to social networks are also bacterial supersharers. We conclude that hunter-gatherer social microbiomes are predominantly pathogenic and were shaped by evolutionary tradeoffs between extensive sociality and disease spread.

3.
Evol Hum Sci ; 5: e13, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37587941

RESUMO

Ecological and genetic factors have influenced the composition of the human microbiome during our evolutionary history. We analysed the oral microbiota of the Agta, a hunter-gatherer population where some members have adopted an agricultural diet. We show that age is the strongest factor modulating the microbiome, probably through immunosenescence since we identified an increase in the number of species classified as pathogens with age. We also characterised biological and cultural processes generating sexual dimorphism in the oral microbiome. A small subset of oral bacteria is influenced by the host genome, linking host collagen genes to bacterial biofilm formation. Our data also suggest that shifting from a fish/meat diet to a rice-rich diet transforms their microbiome, mirroring the Neolithic transition. All of these factors have implications in the epidemiology of oral diseases. Thus, the human oral microbiome is multifactorial and shaped by various ecological and social factors that modify the oral environment.

4.
Sci Rep ; 10(1): 16134, 2020 09 30.
Artigo em Inglês | MEDLINE | ID: mdl-32999407

RESUMO

The Roma people are the largest transnational ethnic minority in Europe and can be considered the last human migration of South Asian origin into the continent. They left Northwest India approximately 1,000 years ago, reaching the Balkan Peninsula around the twelfth century and Romania in the fourteenth century. Here, we analyze whole-genome sequencing data of 40 Roma and 40 non-Roma individuals from Romania. We performed a genome-wide scan of selection comparing Roma, their local host population, and a Northwestern Indian population, to identify the selective pressures faced by the Roma mainly after they settled in Europe. We identify under recent selection several pathways implicated in immune responses, among them cellular metabolism pathways known to be rewired after immune stimulation. We validated the interaction between PIK3-mTOR-HIF-1α and cytokine response influenced by bacterial and fungal infections. Our results point to a significant role of these pathways for host defense against the most prevalent pathogens in Europe during the last millennium.


Assuntos
Imunidade/genética , Roma (Grupo Étnico)/genética , Adulto , Povo Asiático/genética , Península Balcânica , Etnicidade/genética , Feminino , Efeito Fundador , Genética Populacional/métodos , Migração Humana , Humanos , Índia , Masculino , Grupos Minoritários , Roma (Grupo Étnico)/etnologia , Romênia , Seleção Genética , População Branca/genética , Sequenciamento Completo do Genoma/métodos
5.
Mol Biol Evol ; 37(11): 3175-3187, 2020 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-32589725

RESUMO

The Roma Diaspora-traditionally known as Gypsies-remains among the least explored population migratory events in historical times. It involved the migration of Roma ancestors out-of-India through the plateaus of Western Asia ultimately reaching Europe. The demographic effects of the Diaspora-bottlenecks, endogamy, and gene flow-might have left marked molecular traces in the Roma genomes. Here, we analyze the whole-genome sequence of 46 Roma individuals pertaining to four migrant groups in six European countries. Our analyses revealed a strong, early founder effect followed by a drastic reduction of ∼44% in effective population size. The Roma common ancestors split from the Punjabi population, from Northwest India, some generations before the Diaspora started, <2,000 years ago. The initial bottleneck and subsequent endogamy are revealed by the occurrence of extensive runs of homozygosity and identity-by-descent segments in all Roma populations. Furthermore, we provide evidence of gene flow from Armenian and Anatolian groups in present-day Roma, although the primary contribution to Roma gene pool comes from non-Roma Europeans, which accounts for >50% of their genomes. The linguistic and historical differentiation of Roma in migrant groups is confirmed by the differential proportion, but not a differential source, of European admixture in the Roma groups, which shows a westward cline. In the present study, we found that despite the strong admixture Roma had in their diaspora, the signature of the initial bottleneck and the subsequent endogamy is still present in Roma genomes.


Assuntos
Genoma Humano , Roma (Grupo Étnico)/genética , Europa (Continente) , Fluxo Gênico , Humanos , Filogeografia , Densidade Demográfica
6.
Biol Direct ; 14(1): 17, 2019 09 03.
Artigo em Inglês | MEDLINE | ID: mdl-31481097

RESUMO

BACKGROUND: Determining the factors involved in the likelihood of a gene being under adaptive selection is still a challenging goal in Evolutionary Biology. Here, we perform an evolutionary analysis of the human metabolic genes to explore the associations between network structure and the presence and strength of natural selection in the genes whose products are involved in metabolism. Purifying and positive selection are estimated at interspecific (among mammals) and intraspecific (among human populations) levels, and the connections between enzymatic reactions are differentiated between incoming (in-degree) and outgoing (out-degree) links. RESULTS: We confirm that purifying selection has been stronger in highly connected genes. Long-term positive selection has targeted poorly connected enzymes, whereas short-term positive selection has targeted different enzymes depending on whether the selective sweep has reached fixation in the population: genes under a complete selective sweep are poorly connected, whereas those under an incomplete selective sweep have high out-degree connectivity. The last steps of pathways are more conserved due to stronger purifying selection, with long-term positive selection targeting preferentially enzymes that catalyze the first steps. However, short-term positive selection has targeted enzymes that catalyze the last steps in the metabolic network. Strong signals of positive selection have been found for metabolic processes involved in lipid transport and membrane fluidity and permeability. CONCLUSIONS: Our analysis highlights the importance of analyzing the same biological system at different evolutionary timescales to understand the evolution of metabolic genes and of distinguishing between incoming and outgoing links in a metabolic network. Short-term positive selection has targeted enzymes with a different connectivity profile depending on the completeness of the selective sweep, while long-term positive selection has targeted genes with fewer connections that code for enzymes that catalyze the first steps in the network. REVIEWERS: This article was reviewed by Diamantis Sellis and Brandon Invergo.


Assuntos
Evolução Molecular , Mamíferos/genética , Redes e Vias Metabólicas/genética , Seleção Genética , Animais , Humanos , Mamíferos/metabolismo
7.
BMC Evol Biol ; 19(1): 39, 2019 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-30704392

RESUMO

BACKGROUND: During the modern human expansion, new environmental pressures may have driven adaptation, especially in genes related to the perception of ingested substances and their detoxification. Consequently, positive (adaptive) selection may have occurred in genes related to taste, and in those related to the CYP450 system due to its role in biotransformation of potentially toxic compounds. A total of 91 genes (taste receptors and CYP450 superfamily) have been studied using Hierarchical Boosting, a powerful combination of different selection tests, to detect signatures of recent positive selection in three continental human populations: Northern Europeans (CEU), East Asians (CHB) and Africans (YRI). Analyses have been refined with selection analyses of the 26 populations of 1000 Genomes Project Phase 3. RESULTS: Genes related to taste perception have not been positively selected in the three continental human populations. This finding suggests that, contrary to results of previous studies, different allele frequencies among populations in genes such as TAS2R38 and TAS2R16 are not due to positive selection but to genetic drift. CYP1 and CYP2 genes, also previously considered to be under positive selection, did not show signatures of selective sweeps. However, three genes belonging to the CYP450 system have been identified by the Hierarchical Boosting as positively selected: CYP3A4 and CYP3A43 in CEU, and CYP27A1 in CHB. CONCLUSIONS: No main adaptive differences are found in known taste receptor genes among the three continental human populations studied. However, there are important genetic adaptations in the cytochrome P450 system related to the Out of Africa expansion of modern humans. We confirmed that CYP3A4 and CYP3A43 are under selection in CEU, and we report for the first time CYP27A1 to be under positive selection in CHB.


Assuntos
Adaptação Fisiológica/genética , Genoma Humano , Percepção Gustatória/genética , Biotransformação/genética , Sistema Enzimático do Citocromo P-450/genética , Evolução Molecular , Humanos , Polimorfismo de Nucleotídeo Único , Seleção Genética
8.
PLoS One ; 13(12): e0208782, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30550546

RESUMO

Metabolic networks comprise thousands of enzymatic reactions functioning in a controlled manner and have been shaped by natural selection. Thanks to the genome data, the footprints of adaptive (positive) selection are detectable, and the strength of purifying selection can be measured. This has made possible to know where, in the metabolic network, adaptive selection has acted and where purifying selection is more or less strong and efficient. We have carried out a comprehensive molecular evolutionary study of all the genes involved in the human metabolism. We investigated the type and strength of the selective pressures that acted on the enzyme-coding genes belonging to metabolic pathways during the divergence of primates and rodents. Then, we related those selective pressures to the functional and topological characteristics of the pathways. We have used DNA sequences of all enzymes (956) of the metabolic pathways comprised in the HumanCyc database, using genome data for humans and five other mammalian species. We have found that the evolution of metabolic genes is primarily constrained by the layer of the metabolism in which the genes participate: while genes encoding enzymes of the inner core of metabolism are much conserved, those encoding enzymes participating in the outer layer, mediating the interaction with the environment, are evolutionarily less constrained and more plastic, having experienced faster functional evolution. Genes that have been targeted by adaptive selection are endowed by higher out-degree centralities than non-adaptive genes, while genes with high in-degree centralities are under stronger purifying selection. When the position along the pathway is considered, a funnel-like distribution of the strength of the purifying selection is found. Genes at bottom positions are highly preserved by purifying selection, whereas genes at top positions, catalyzing the first steps, are open to evolutionary changes. These results show how functional and topological characteristics of metabolic pathways contribute to shape the patterns of evolutionary pressures driven by natural selection and how pathway network structure matters in the evolutionary process that shapes the evolution of the system.


Assuntos
Evolução Molecular , Metabolismo/genética , Animais , Enzimas/genética , Enzimas/metabolismo , Humanos , Mamíferos/genética , Mamíferos/metabolismo
9.
Hum Mutat ; 37(10): 1060-73, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27397105

RESUMO

Nucleotide variants in microRNA regions have been associated with disease; nevertheless, few studies still have addressed the allele-dependent effect of these changes. We studied microRNA genetic variation in human populations and found that while low-frequency variants accumulate indistinctly in microRNA regions, the mature and seed regions tend to be depleted of high-frequency variants, probably as a result of purifying selection. Comparison of pairwise population fixation indexes among regions showed that the seed had higher population fixation indexes than the other regions, suggesting the existence of local adaptation in the seed region. We further performed functional studies of three microRNA variants associated with cancer (rs2910164:C > G in MIR146A, rs11614913:C > T in MIR196A2, and rs3746444:A > G in both MIR499A and MIR499B). We found differences in the expression between alleles and in the regulation of several genes involved in cancer, such as TP53, KIT, CDH1, CLH, and TERT, which may result in changes in regulatory networks related to tumorigenesis. Furthermore, luciferase-based assays showed that MIR499A could be regulating the cadherin CDH1 and the cell adhesion molecule CLH1 in an allele-dependent fashion. A better understanding of the effect of microRNA variants associated with disease could be key in our way to a more personalized medicine.


Assuntos
MicroRNAs/genética , Neoplasias/genética , Regiões 3' não Traduzidas , Antígenos CD , Caderinas/genética , Frequência do Gene , Redes Reguladoras de Genes , Estudos de Associação Genética , Predisposição Genética para Doença , Variação Genética , Células HeLa , Humanos , Medicina de Precisão
10.
Sci Rep ; 5: 9996, 2015 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-26017457

RESUMO

East Africa is a strategic region to study human genetic diversity due to the presence of ethnically, linguistically, and geographically diverse populations. Here, we provide new insight into the genetic history of populations living in the Sudanese region of East Africa by analysing nine ethnic groups belonging to three African linguistic families: Niger-Kordofanian, Nilo-Saharan and Afro-Asiatic. A total of 500 individuals were genotyped for 200,000 single-nucleotide polymorphisms. Principal component analysis, clustering analysis using ADMIXTURE, FST statistics, and the three-population test were used to investigate the underlying genetic structure and ancestry of the different ethno-linguistic groups. Our analyses revealed a genetic component for Sudanese Nilo-Saharan speaking groups (Darfurians and part of Nuba populations) related to Nilotes of South Sudan, but not to other Sudanese populations or other sub-Saharan populations. Populations inhabiting the North of the region showed close genetic affinities with North Africa, with a component that could be remnant of North Africans before the migrations of Arabs from Arabia. In addition, we found very low genetic distances between populations in genes important for anti-malarial and anti-bacterial host defence, suggesting similar selective pressures on these genes and stressing the importance of considering functional pathways to understand the evolutionary history of populations.


Assuntos
População Negra/genética , Genética Populacional , África Oriental , Análise por Conglomerados , Variação Genética , Geografia , Humanos , Polimorfismo de Nucleotídeo Único , Análise de Componente Principal
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA