Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
3D Print Addit Manuf ; 10(5): 1101-1109, 2023 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-37886413

RESUMO

The ability to create cell-laden fluidic models that mimic the geometries and physical properties of vascularized tissue would be extremely beneficial to the study of disease etiologies and future therapies, including in the case of cancer where there is increasing interest in studying alterations to the microvasculature. Engineered systems can present significant advantages over animal studies, alleviating challenges associated with variable complexity and control. Three-dimensional (3D)-printable tissue-mimicking hydrogels can offer an alternative, where control of the biophysical properties of the materials can be achieved. Hydrogel-based systems that can recreate complex 3D structures and channels with diameters <500 µm are challenging to produce. We present a noncytotoxic photo-responsive hydrogel that supports 3D printing of complex 3D structures with microchannels down to 150 µm in diameter. Fine tuning of the 3D-printing process has allowed the production of complex structures, where for demonstration purposes we present a helical channel with diameters between 250 and 370 µm around a central channel of 150 µm in diameter in materials with mechanical and acoustic properties that closely replicate those of tissue. The ability to control and accurately reproduce the complex features of the microvasculature has value across a wide range of biomedical applications, especially when the materials involved accurately mimic the physical properties of tissue. An approach that is additionally cell compatible provides a unique setup that can be exploited to study aspects of biomedical research with an unprecedented level of accuracy.

2.
Biomater Adv ; 154: 213587, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37633007

RESUMO

In this work, Engineered Living Materials (ELMs), based on the combination of genetically-modified bacteria and mineral-reinforced organic matrices, and endowed with self-healing or regenerative properties and adaptation to specific biological environments were developed. Concretely, we produced ELMs combining human mesenchymal stem cells (hMSCs) and Lactococcus lactis (L. lactis), which was specifically programmed to deliver bone morphogenetic protein (BMP-2) upon external stimulation using nisin, into mineralized alginate matrices. The hybrid organic/inorganic matrix was built through a protocol, inspired by bone mineralization, in which alginate (Alg) assembly and apatite (HA) mineralization occurred simultaneously driven by calcium ions. Chemical composition, structure and reologhical properties of the hybrid 3D matrices were dedicately optimized prior the incorportation of the living entities. Then, the same protocol was reproduced in the presence of hMSC and engineered L. lactis that secrete BMP-2 resulting in 3D hybrid living hydrogels. hMSC viability and osteogenic differentiation in the absence and presence of the bacteria were evaluated by live/dead and quantitative real-time polymerase chain reaction (qPCR) and immunofluorescence assays, respectively. Results demonstrate that these 3D engineered living material support osteogenic differentiation of hMSCs due to the synergistic effect between HA and the growth factors BMP-2 delivered by L. lactis.


Assuntos
Calcinose , Células-Tronco Mesenquimais , Humanos , Osteogênese/genética , Alicerces Teciduais/química , Células-Tronco Mesenquimais/metabolismo , Alginatos , Diferenciação Celular , Calcinose/metabolismo
3.
Mater Today Bio ; 20: 100641, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37179535

RESUMO

Collagen type I lacks affinity for growth factors (GFs) and yet it is clinically used to deliver bone morphogenic protein 2 (BMP-2), a potent osteogenic growth factor. To mitigate this lack of affinity, supra-physiological concentrations of BMP-2 are loaded in collagen sponges leading to uncontrolled BMP-2 leakage out of the material. This has led to important adverse side effects such as carcinogenesis. Here, we design recombinant dual affinity protein fragments, produced in E. Coli, which contain two regions, one that spontaneously binds to collagen and a second one that binds BMP-2. By adding the fragment to collagen sponges, BMP-2 is sequestered enabling solid phase presentation of BMP-2. We demonstrate osteogenesis in vivo with ultra-low doses of BMP-2. Our protein technology enhances the biological activity of collagen without using complex chemistries or changing the manufacturing of the base material and so opens a pathway to clinical translation.

4.
Polymers (Basel) ; 14(24)2022 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-36559706

RESUMO

Cell function can be directly influenced by the mechanical and structural properties of the extracellular environment. In particular, cell morphology and phenotype can be regulated via the modulation of both the stiffness and surface topography of cell culture substrates. Previous studies have highlighted the ability to design cell culture substrates to optimise cell function. Many such examples, however, employ photo-crosslinkable polymers with a terminal stiffness or surface profile. This study presents a system of polyacrylamide hydrogels, where the surface topography can be tailored and the matrix stiffness can be altered in situ with photoirradiation. The process allows for the temporal regulation of the extracellular environment. Specifically, the surface topography can be tailored via reticulation parameters to include creased features with control over the periodicity, length and branching. The matrix stiffness can also be dynamically tuned via exposure to an appropriate dosage and wavelength of light, thus, allowing for the temporal regulation of the extracellular environment. When cultured on the surface of the hydrogels, the morphology and alignment of immortalised human mesenchymal stem cells can be directly influenced through the tailoring of surface creases, while cell size can be altered via changes in matrix stiffness. This system offers a new platform to study cellular mechanosensing and the influence of extracellular cues on cell phenotype and function.

5.
Front Cell Dev Biol ; 10: 988699, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36425532

RESUMO

The tumor microenvironment plays an important role in cancer development and the use of 3D in vitro systems that decouple different elements of this microenvironment is critical for the study of cancer progression. In neuroblastoma (NB), vitronectin (VN), an extracellular matrix protein, has been linked to poor prognosis and appears as a promising therapeutic target. Here, we developed hydrogels that incorporate VN into 3D polyethylene glycol (PEG) hydrogel networks to recapitulate the native NB microenvironment. The stiffness of the VN/PEG hydrogels was modulated to be comparable to the in vivo values reported for NB tissue samples. We used SK-N-BE (2) NB cells to demonstrate that PEGylated VN promotes cell adhesion as the native protein does. Furthermore, the PEGylation of VN allows its crosslinking into the hydrogel network, providing VN retention within the hydrogels that support viable cells in 3D. Confocal imaging and ELISA assays indicate that cells secrete VN also in the hydrogels and continue to reorganize their 3D environment. Overall, the 3D VN-based PEG hydrogels recapitulate the complexity of the native tumor extracellular matrix, showing that VN-cell interaction plays a key role in NB aggressiveness, and that VN could potentially be targeted in preclinical drug studies performed on the presented hydrogels.

6.
Adv Healthc Mater ; 11(20): e2200964, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35933595

RESUMO

Living biointerfaces are a new class of biomaterials combining living cells and polymeric matrices that can act as biologically active and instructive materials that host and provide signals to surrounding cells. Here, living biomaterials based on Lactococcus lactis to control hematopoietic stem cells in 2D surfaces and 3D hydrogels are introduced. L. lactis is modified to express C-X-C motif chemokine ligand 12 (CXCL12), thrombopoietin (TPO), vascular cell adhesion protein 1 (VCAM1), and the 7th-10th type III domains of human plasma fibronectin (FN III7-10 ), in an attempt to mimic ex vivo the conditions of the human bone marrow. These results suggest that living biomaterials that incorporate bacteria expressing recombinant CXCL12, TPO, VCAM1, and FN in both 2D systems direct hematopoietic stem and progenitor cells (HSPCs)-bacteria interaction, and in 3D using hydrogels functionalized with full-length human plasma fibronectin allow for a notable expansion of the CD34+ /CD38- /CD90+ HSPC population compared to the initial population. These results provide a strong evidence based on data that suggest the possibility of using living materials based on genetically engineered bacteria for the ex-vivo expansion of HSPC with eventual practical clinical applications in HSPCs transplantation for hematological disorders.


Assuntos
Fibronectinas , Trombopoetina , Humanos , Fibronectinas/metabolismo , Trombopoetina/metabolismo , Materiais Biocompatíveis/metabolismo , Ligantes , Células-Tronco Hematopoéticas , Hidrogéis/metabolismo
7.
Nanoscale ; 13(23): 10266-10280, 2021 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-34085085

RESUMO

The application of nanotechnology to regenerative medicine has increased over recent decades. The development of materials that can influence biology at the nanoscale has gained interest as our understanding of the interactions between cells and biomaterials at the nanoscale has grown. Materials that are either nanostructured or influence the nanostructure of the cellular microenvironment have been developed and shown to have advantages over their microscale counterparts. There are several reviews which have been published that discuss how nanomaterials have been used in regenerative medicine, particularly in bone regeneration. Most of these studies have explored this concept in specific areas, such as the application of glass-based nanocomposites, nanotechnology for targeted drug delivery to stimulate bone repair, and the progress in nanotechnology for the treatment of osteoporosis. In this review paper, the impact of nanotechnology in biomaterials development for bone regeneration will be discussed highlighting specifically, nanostructured materials that influence mechanical properties, biocompatibility, and osteoinductivity.


Assuntos
Nanoestruturas , Engenharia Tecidual , Materiais Biocompatíveis , Regeneração Óssea , Nanotecnologia , Medicina Regenerativa
8.
J Nanobiotechnology ; 18(1): 147, 2020 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-33081777

RESUMO

BACKGROUND: The mechanical properties of single living cells have proven to be a powerful marker of the cell physiological state. The use of nanoindentation-based single cell force spectroscopy provided a wealth of information on the elasticity of cells, which is still largely to be exploited. The simplest model to describe cell mechanics is to treat them as a homogeneous elastic material and describe it in terms of the Young's modulus. Beside its simplicity, this approach proved to be extremely informative, allowing to assess the potential of this physical indicator towards high throughput phenotyping in diagnostic and prognostic applications. RESULTS: Here we propose an extension of this analysis to explicitly account for the properties of the actin cortex. We present a method, the Elasticity Spectra, to calculate the apparent stiffness of the cell as a function of the indentation depth and we suggest a simple phenomenological approach to measure the thickness and stiffness of the actin cortex, in addition to the standard Young's modulus. CONCLUSIONS: The Elasticity Spectra approach is tested and validated on a set of cells treated with cytoskeleton-affecting drugs, showing the potential to extend the current representation of cell mechanics, without introducing a detailed and complex description of the intracellular structure.


Assuntos
Actinas/química , Análise de Célula Única/métodos , Citoesqueleto de Actina/metabolismo , Encéfalo , Linhagem Celular , Módulo de Elasticidade , Elasticidade , Humanos , Cinética , Bicamadas Lipídicas/química , Bicamadas Lipídicas/metabolismo , Modelos Biológicos , Nanotecnologia , Análise Espectral , Estresse Mecânico
9.
ACS Appl Bio Mater ; 3(8): 5056-5066, 2020 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-32904797

RESUMO

Brushite cements are promising bone regeneration materials with limited biological and mechanical properties. Here, we engineer a mechanically improved brushite-collagen type I cement with enhanced biological properties by use of chiral chemistry; d- and l-tartaric acid were used to limit crystal growth and increase the mechanical properties of brushite-collagen cements. The impact of the chiral molecules on the cements was examined with Fourier-transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), and scanning electron microscopy (SEM). A 3-point bend test was utilized to study the fracture toughness, and cell attachment and morphology studies were carried out to demonstrate biocompatibility. XRD and SEM analyses showed that l-, but not d-tartaric acid, significantly restrained brushite crystal growth by binding to the {010} plane of the mineral and increased brushite crystal packing and the collagen interaction area. l-Tartaric acid significantly improved fracture toughness compared to traditional brushite by 30%. Collagen significantly enhanced cell morphology and focal adhesion expression on l-tartaric acid-treated brushite cements.

10.
Adv Healthc Mater ; 9(17): e2000517, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32696605

RESUMO

It has been established that the mechanical properties of hydrogels control the fate of (stem) cells. However, despite its importance, a one-to-one correspondence between gels' stiffness and cell behavior is still missing from literature. In this work, the viscoelastic properties of poly(ethylene-glycol) (PEG)-based hydrogels are investigated by means of rheological measurements performed at different length scales. The outcomes of this work reveal that PEG-based hydrogels show significant stiffening when subjected to a compressional deformation, implying that conventional bulk rheology measurements may overestimate the stiffness of hydrogels by up to an order of magnitude. It is hypothesized that this apparent stiffening is caused by an induced "tensional state" of the gel network, due to the application of a compressional normal force during sample loading. Moreover, it is shown that the actual stiffness of the hydrogels is instead accurately determined by means of both passive-video-particle-tracking (PVPT) microrheology and nanoindentation measurements, which are inherently performed at the cell's length scale and in absence of any externally applied force in the case of PVPT. These results underpin a methodology for measuring hydrogels' linear viscoelastic properties that are representative of the mechanical constraints perceived by cells in 3D hydrogel cultures.


Assuntos
Hidrogéis , Polietilenoglicóis , Materiais Biocompatíveis , Fenômenos Mecânicos , Reologia
11.
Dev Cell ; 51(4): 460-475.e10, 2019 11 18.
Artigo em Inglês | MEDLINE | ID: mdl-31607653

RESUMO

In development, wound healing, and cancer metastasis, vertebrate cells move through 3D interstitial matrix, responding to chemical and physical guidance cues. Protrusion at the cell front has been extensively studied, but the retraction phase of the migration cycle is not well understood. Here, we show that fast-moving cells guided by matrix cues establish positive feedback control of rear retraction by sensing membrane tension. We reveal a mechanism of rear retraction in 3D matrix and durotaxis controlled by caveolae, which form in response to low membrane tension at the cell rear. Caveolae activate RhoA-ROCK1/PKN2 signaling via the RhoA guanidine nucleotide exchange factor (GEF) Ect2 to control local F-actin organization and contractility in this subcellular region and promote translocation of the cell rear. A positive feedback loop between cytoskeletal signaling and membrane tension leads to rapid retraction to complete the migration cycle in fast-moving cells, providing directional memory to drive persistent cell migration in complex matrices.


Assuntos
Movimento Celular/fisiologia , Pseudópodes/fisiologia , Citoesqueleto de Actina/metabolismo , Actinas/metabolismo , Animais , Cavéolas/fisiologia , Linhagem Celular Tumoral , Membrana Celular/metabolismo , Membrana Celular/fisiologia , Polaridade Celular/fisiologia , Extensões da Superfície Celular/metabolismo , Extensões da Superfície Celular/fisiologia , Citoesqueleto/metabolismo , Citosol/metabolismo , Matriz Extracelular/metabolismo , Humanos , Camundongos , Proteína Quinase C/metabolismo , Pseudópodes/metabolismo , Ratos , Transdução de Sinais , Quinases Associadas a rho/metabolismo , Proteína rhoA de Ligação ao GTP/metabolismo
12.
Nat Commun ; 10(1): 4149, 2019 09 12.
Artigo em Inglês | MEDLINE | ID: mdl-31515493

RESUMO

Studies of cellular mechano-signaling have often utilized static models that do not fully replicate the dynamics of living tissues. Here, we examine the time-dependent response of primary human mesenchymal stem cells (hMSCs) to cyclic tensile strain (CTS). At low-intensity strain (1 h, 4% CTS at 1 Hz), cell characteristics mimic responses to increased substrate stiffness. As the strain regime is intensified (frequency increased to 5 Hz), we characterize rapid establishment of a broad, structured and reversible protein-level response, even as transcription is apparently downregulated. Protein abundance is quantified coincident with changes to protein conformation and post-translational modification (PTM). Furthermore, we characterize changes to the linker of nucleoskeleton and cytoskeleton (LINC) complex that bridges the nuclear envelope, and specifically to levels and PTMs of Sad1/UNC-84 (SUN) domain-containing protein 2 (SUN2). The result of this regulation is to decouple mechano-transmission between the cytoskeleton and the nucleus, thus conferring protection to chromatin.


Assuntos
Núcleo Celular/metabolismo , Células-Tronco Mesenquimais/citologia , Proteínas Nucleares/metabolismo , Sequência de Aminoácidos , Fenômenos Biomecânicos , Forma do Núcleo Celular , Cromatina/metabolismo , Citoesqueleto/metabolismo , Dano ao DNA , Histonas/metabolismo , Humanos , Canais Iônicos/metabolismo , Células-Tronco Mesenquimais/metabolismo , Modelos Biológicos , Membrana Nuclear/metabolismo , Proteínas Nucleares/química , Domínios Proteicos , Processamento de Proteína Pós-Traducional , Proteoma/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Estresse Mecânico , Resistência à Tração
13.
Sci Rep ; 8(1): 8981, 2018 06 12.
Artigo em Inglês | MEDLINE | ID: mdl-29895825

RESUMO

The mechanical environment can influence cell behaviour, including changes to transcriptional and proteomic regulation, morphology and, in the case of stem cells, commitment to lineage. However, current tools for characterizing substrates' mechanical properties, such as atomic force microscopy (AFM), often do not fully recapitulate the length and time scales over which cells 'feel' substrates. Here, we show that an immortalised, clonal line of human mesenchymal stem cells (MSCs) maintains the responsiveness to substrate mechanics observed in primary cells, and can be used as a reporter of stiffness. MSCs were cultured on soft and stiff polyacrylamide hydrogels. In both primary and immortalised MSCs, stiffer substrates promoted increased cell spreading, expression of lamin-A/C and translocation of mechano-sensitive proteins YAP1 and MKL1 to the nucleus. Stiffness was also found to regulate transcriptional markers of lineage. A GFP-YAP/RFP-H2B reporter construct was designed and virally delivered to the immortalised MSCs for in situ detection of substrate stiffness. MSCs with stable expression of the reporter showed GFP-YAP to be colocalised with nuclear RFP-H2B on stiff substrates, enabling development of a cellular reporter of substrate stiffness. This will facilitate mechanical characterisation of new materials developed for applications in tissue engineering and regenerative medicine.


Assuntos
Regulação da Expressão Gênica/efeitos dos fármacos , Hidrogéis/química , Hidrogéis/farmacologia , Mecanotransdução Celular , Células-Tronco Mesenquimais/metabolismo , Idoso , Idoso de 80 Anos ou mais , Linhagem Celular Transformada , Feminino , Humanos , Masculino , Células-Tronco Mesenquimais/ultraestrutura , Microscopia de Força Atômica , Pessoa de Meia-Idade
14.
ACS Appl Mater Interfaces ; 10(9): 7765-7776, 2018 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-29430919

RESUMO

As cell function and phenotype can be directed by the mechanical characteristics of the surrounding matrix, hydrogels have become important platforms for cell culture systems, with properties that can be tuned by external stimuli, such as divalent cations, enzymatic treatment, and pH. However, many of these stimuli can directly affect cell behavior, making it difficult to distinguish purely mechanical signaling events. This study reports on the development of a hydrogel that incorporates photoswitchable cross-linkers, which can reversibly alter their stiffness upon irradiation with the appropriate wavelength of light. Furthermore, this study reports the response of bone-marrow-derived mesenchymal stem cells (MSCs) on these hydrogels that were stiffened systematically by irradiation with blue light. The substrates were shown to be noncytotoxic, and crucially MSCs were not affected by blue-light exposure. Time-resolved analysis of cell morphology showed characteristic cell spreading and increased aspect ratios in response to greater substrate stiffness. This hydrogel provides a platform to study mechanosignaling in cells responding to dynamic changes in stiffness, offering a new way to study mechanotransduction signaling pathways and biological processes, with implicit changes to tissue mechanics, such as development, ageing, and fibrosis.


Assuntos
Hidrogéis/química , Células Cultivadas , Matriz Extracelular , Mecanotransdução Celular , Células-Tronco Mesenquimais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA