Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 91
Filtrar
3.
Alzheimers Res Ther ; 15(1): 92, 2023 05 06.
Artigo em Inglês | MEDLINE | ID: mdl-37149695

RESUMO

BACKGROUND: Studies on DNA methylation (DNAm) in Alzheimer's disease (AD) have recently highlighted several genomic loci showing association with disease onset and progression. METHODS: Here, we conducted an epigenome-wide association study (EWAS) using DNAm profiles in entorhinal cortex (EC) from 149 AD patients and control brains and combined these with two previously published EC datasets by meta-analysis (total n = 337). RESULTS: We identified 12 cytosine-phosphate-guanine (CpG) sites showing epigenome-wide significant association with either case-control status or Braak's tau-staging. Four of these CpGs, located in proximity to CNFN/LIPE, TENT5A, PALD1/PRF1, and DIRAS1, represent novel findings. Integrating DNAm levels with RNA sequencing-based mRNA expression data generated in the same individuals showed significant DNAm-mRNA correlations for 6 of the 12 significant CpGs. Lastly, by calculating rates of epigenetic age acceleration using two recently proposed "epigenetic clock" estimators we found a significant association with accelerated epigenetic aging in the brains of AD patients vs. controls. CONCLUSION: In summary, our study represents the hitherto most comprehensive EWAS in AD using EC and highlights several novel differentially methylated loci with potential effects on gene expression.


Assuntos
Doença de Alzheimer , Epigenoma , Humanos , Epigênese Genética , Doença de Alzheimer/genética , Córtex Entorrinal , Ilhas de CpG , Metilação de DNA , Estudo de Associação Genômica Ampla , GTP Fosfo-Hidrolases/genética , Proteínas Supressoras de Tumor/genética
5.
Neurobiol Aging ; 123: 208-215, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36586737

RESUMO

Cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL) and retinal vasculopathy with cerebral leukodystrophy and systemic manifestations (RVCL-S) are the most common forms of rare monogenic early-onset cerebral small vessel disease and share clinical, and, to different extents, neuroradiological and neuropathological features. However, whether CADASIL and RVCL-S overlapping phenotype may be explained by shared genetic risk or causative factors such as TREX1 coding variants remains poorly understood. To investigate this intriguing hypothesis, we used exome sequencing to screen TREX1 protein-coding variability in a large multi-ethnic cohort of 180 early-onset independent familial and apparently sporadic CADASIL-like Caucasian patients from the USA, Portugal, Finland, Serbia and Turkey. We report 2 very rare and likely pathogenic TREX1 mutations: a loss of function mutation (p.Ala129fs) clustering in the catalytic domain, in an apparently sporadic 46-year-old patient from the USA and a missense mutation (p.Tyr305Cys) in the well conserved C-terminal region, in a 57-year-old patient with positive family history from Serbia. In concert with recent findings, our study expands the clinical spectrum of diseases associated with TREX1 mutations.


Assuntos
CADASIL , Doenças de Pequenos Vasos Cerebrais , Leucoencefalopatias , Humanos , CADASIL/genética , Infarto Cerebral , Doenças de Pequenos Vasos Cerebrais/complicações , Leucoencefalopatias/diagnóstico por imagem , Leucoencefalopatias/genética , Mutação/genética , Receptor Notch3/genética
6.
Alzheimers Dement ; 19(6): 2317-2331, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36464806

RESUMO

INTRODUCTION: Despite increasing evidence of a role of rare genetic variation in the risk of Alzheimer's disease (AD), limited attention has been paid to its contribution to AD-related biomarker traits indicative of AD-relevant pathophysiological processes. METHODS: We performed whole-exome gene-based rare-variant association studies (RVASs) of 17 AD-related traits on whole-exome sequencing (WES) data generated in the European Medical Information Framework for Alzheimer's Disease Multimodal Biomarker Discovery (EMIF-AD MBD) study (n = 450) and whole-genome sequencing (WGS) data from ADNI (n = 808). RESULTS: Mutation screening revealed a novel probably pathogenic mutation (PSEN1 p.Leu232Phe). Gene-based RVAS revealed the exome-wide significant contribution of rare coding variation in RBKS and OR7A10 to cognitive performance and protection against left hippocampal atrophy, respectively. DISCUSSION: The identification of these novel gene-trait associations offers new perspectives into the role of rare coding variation in the distinct pathophysiological processes culminating in AD, which may lead to identification of novel therapeutic and diagnostic targets.


Assuntos
Doença de Alzheimer , Humanos , Doença de Alzheimer/genética , Doença de Alzheimer/diagnóstico , Exoma/genética , Estudos de Associação Genética , Fenótipo , Biomarcadores
7.
medRxiv ; 2023 Dec 24.
Artigo em Inglês | MEDLINE | ID: mdl-38196633

RESUMO

DNA methylation (DNAm) is an epigenetic mark with essential roles in disease development and predisposition. Here, we created genome-wide maps of methylation quantitative trait loci (meQTL) in three peripheral tissues and used Mendelian randomization (MR) analyses to assess the potential causal relationships between DNAm and risk for two common neurodegenerative disorders, i.e. Alzheimer's disease (AD) and Parkinson's disease (PD). Genome-wide single nucleotide polymorphism (SNP; ~5.5M sites) and DNAm (~850K CpG sites) data were generated from whole blood (n=1,058), buccal (n=1,527) and saliva (n=837) specimens. We identified between 11 and 15 million genome-wide significant (p<10-14) SNP-CpG associations in each tissue. Combining these meQTL GWAS results with recent AD/PD GWAS summary statistics by MR strongly suggests that the previously described associations between PSMC3, PICALM, and TSPAN14 and AD may be founded on differential DNAm in or near these genes. In addition, there is strong, albeit less unequivocal, support for causal links between DNAm at PRDM7 in AD as well as at KANSL1/MAPT in AD and PD. Our study adds valuable insights on AD/PD pathogenesis by combining two high-resolution "omics" domains, and the meQTL data shared along with this publication will allow like-minded analyses in other diseases.

8.
Brain Commun ; 4(6): fcac274, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36382223

RESUMO

Dysregulation of microRNA gene expression has been implicated in many neurodegenerative diseases, including Parkinson's disease. However, the individual dysregulated microRNAs remain largely unknown. Previous meta-analyses have highlighted several microRNAs being differentially expressed in post-mortem Parkinson's disease and Alzheimer's disease brains versus controls, but they were based on small sample sizes. In this study, we quantified the expression of the most compelling Parkinson's and Alzheimer's disease microRNAs from these meta-analyses ('candidate miRNAs') in one of the largest Parkinson's/Alzheimer's disease case-control post-mortem brain collections available (n = 451), thereby quadruplicating previously investigated sample sizes. Parkinson's disease candidate microRNA hsa-miR-132-3p was differentially expressed in our Parkinson's (P = 4.89E-06) and Alzheimer's disease samples (P = 3.20E-24) compared with controls. Alzheimer's disease candidate microRNAs hsa-miR-132-5p (P = 4.52E-06) and hsa-miR-129-5p (P = 0.0379) were differentially expressed in our Parkinson's disease samples. Combining these novel data with previously published data substantially improved the statistical support (α = 3.85E-03) of the corresponding meta-analyses, clearly implicating these microRNAs in both Parkinson's and Alzheimer's disease. Furthermore, hsa-miR-132-3p/-5p (but not hsa-miR-129-5p) showed association with α-synuclein neuropathological Braak staging (P = 3.51E-03/P = 0.0117), suggesting that hsa-miR-132-3p/-5p play a role in α-synuclein aggregation beyond the early disease phase. Our study represents the largest independent assessment of recently highlighted candidate microRNAs in Parkinson's and Alzheimer's disease brains, to date. Our results implicate hsa-miR-132-3p/-5p and hsa-miR-129-5p to be differentially expressed in both Parkinson's and Alzheimer's disease, pinpointing shared pathogenic mechanisms across these neurodegenerative diseases. Intriguingly, based on publicly available high-throughput sequencing of RNA isolated by cross-linking immunoprecipitation data, hsa-miR-132 may interact with SNCA messenger RNA in the human brain, possibly pinpointing novel therapeutic approaches in fighting Parkinson's disease.

9.
Clin Epigenetics ; 14(1): 139, 2022 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-36320053

RESUMO

Epigenome-wide association studies (EWAS) assessing the link between DNA methylation (DNAm) and phenotypes related to structural brain measures, cognitive function, and neurodegenerative diseases are becoming increasingly more popular. Due to the inaccessibility of brain tissue in humans, several studies use peripheral tissues such as blood, buccal swabs, and saliva as surrogates. To aid the functional interpretation of EWAS findings in such settings, there is a need to assess the correlation of DNAm variability across tissues in the same individuals. In this study, we performed a correlation analysis between DNAm data of a total of n = 120 matched post-mortem buccal and prefrontal cortex samples. We identified nearly 25,000 (3% of approximately 730,000) cytosine-phosphate-guanine (CpG) sites showing significant (false discovery rate q < 0.05) correlations between buccal and PFC samples. Correlated CpG sites showed a preponderance to being located in promoter regions and showed a significant enrichment of being determined by genetic factors, i.e. methylation quantitative trait loci (mQTL), based on buccal and dorsolateral prefrontal cortex mQTL databases. Our novel buccal-brain DNAm correlation map will provide a valuable resource for future EWAS using buccal samples for studying DNAm effects on phenotypes relating to the brain. All correlation results are made freely available to the public online.


Assuntos
Metilação de DNA , Locos de Características Quantitativas , Humanos , DNA , Encéfalo , Fenótipo , Estudo de Associação Genômica Ampla/métodos , Epigênese Genética
10.
Biomedicines ; 10(11)2022 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-36359320

RESUMO

The decline in episodic memory (EM) performance is a hallmark of cognitive aging and an early clinical sign in Alzheimer's disease (AD). In this study, we conducted an epigenome-wide association study (EWAS) using DNA methylation (DNAm) profiles from buccal and blood samples for cross-sectional (n = 1019) and longitudinal changes in EM performance (n = 626; average follow-up time 5.4 years) collected under the auspices of the Lifebrain consortium project. The mean age of participants with cross-sectional data was 69 ± 11 years (30−90 years), with 50% being females. We identified 21 loci showing suggestive evidence of association (p < 1 × 10−5) with either or both EM phenotypes. Among these were SNCA, SEPW1 (both cross-sectional EM), ITPK1 (longitudinal EM), and APBA2 (both EM traits), which have been linked to AD or Parkinson's disease (PD) in previous work. While the EM phenotypes were nominally significantly (p < 0.05) associated with poly-epigenetic scores (PESs) using EWASs on general cognitive function, none remained significant after correction for multiple testing. Likewise, estimating the degree of "epigenetic age acceleration" did not reveal significant associations with either of the two tested EM phenotypes. In summary, our study highlights several interesting candidate loci in which differential DNAm patterns in peripheral tissue are associated with EM performance in humans.

11.
Transl Psychiatry ; 12(1): 352, 2022 08 29.
Artigo em Inglês | MEDLINE | ID: mdl-36038535

RESUMO

Dysregulation of microRNAs (miRNAs) is involved in the pathogenesis of neurodegenerative diseases, including Alzheimer's disease (AD). Hitherto, sample sizes from differential miRNA expression studies in AD are exceedingly small aggravating any biological inference. To overcome this limitation, we investigated six candidate miRNAs in a large collection of brain samples. Brain tissue was derived from superior temporal gyrus (STG) and entorhinal cortex (EC) from 99 AD patients and 91 controls. MiRNA expression was examined by qPCR (STG) or small RNA sequencing (EC). Brain region-dependent differential miRNA expression was investigated in a transgenic AD mouse model using qPCR and FISH. Total RNA sequencing was used to assess differential expression of miRNA target genes. MiR-129-5p, miR-132-5p, and miR-138-5p were significantly downregulated in AD vs. controls both in STG and EC, while miR-125b-5p and miR-501-3p showed no evidence for differential expression in this dataset. In addition, miR-195-5p was significantly upregulated in EC but not STG in AD patients. The brain region-specific pattern of miR-195-5p expression was corroborated in vivo in transgenic AD mice. Total RNA sequencing identified several novel and functionally interesting target genes of these miRNAs involved in synaptic transmission (GABRB1), the immune-system response (HCFC2) or AD-associated differential methylation (SLC16A3). Using two different methods (qPCR and small RNA-seq) in two separate brain regions in 190 individuals we more than doubled the available sample size for most miRNAs tested. Differential gene expression analyses confirm the likely involvement of miR-129-5p, miR-132-5p, miR-138-5p, and miR-195-5p in AD pathogenesis and highlight several novel potentially relevant target mRNAs.


Assuntos
Doença de Alzheimer , MicroRNAs , Doença de Alzheimer/genética , Animais , Encéfalo/metabolismo , Perfilação da Expressão Gênica , Camundongos , Camundongos Transgênicos , MicroRNAs/genética , MicroRNAs/metabolismo , Análise de Sequência de RNA
12.
Alzheimers Dement ; 2022 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-35698882

RESUMO

BACKGROUND: Suspected non-Alzheimer's disease pathophysiology (SNAP) is a biomarker concept that encompasses individuals with neuronal injury but without amyloidosis. We aim to investigate the pathophysiology of SNAP, defined as abnormal tau without amyloidosis, in individuals with mild cognitive impairment (MCI) by cerebrospinal fluid (CSF) proteomics. METHODS: Individuals were classified based on CSF amyloid beta (Aß)1-42 (A) and phosphorylated tau (T), as cognitively normal A-T- (CN), MCI A-T+ (MCI-SNAP), and MCI A+T+ (MCI-AD). Proteomics analyses, Gene Ontology (GO), brain cell expression, and gene expression analyses in brain regions of interest were performed. RESULTS: A total of 96 proteins were decreased in MCI-SNAP compared to CN and MCI-AD. These proteins were enriched for extracellular matrix (ECM), hemostasis, immune system, protein processing/degradation, lipids, and synapse. Fifty-one percent were enriched for expression in the choroid plexus. CONCLUSION: The pathophysiology of MCI-SNAP (A-T+) is distinct from that of MCI-AD. Our findings highlight the need for a different treatment in MCI-SNAP compared to MCI-AD.

13.
Alzheimers Dement (Amst) ; 14(1): e12286, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35571963

RESUMO

Introduction: It is important to understand which biological processes change with aging, and how such changes are associated with increased Alzheimer's disease (AD) risk. We studied how cerebrospinal fluid (CSF) proteomics changed with age and tested if associations depended on amyloid status, sex, and apolipoprotein E Ɛ4 genotype. Methods: We included 277 cognitively intact individuals aged 46 to 89 years from Alzheimer's Disease Neuroimaging Initiative, European Medical Information Framework for Alzheimer's Disease Multimodal Biomarker Discovery, and Metabolic Syndrome in Men. In total, 1149 proteins were measured with liquid chromatography mass spectrometry with multiple reaction monitoring/Rules-Based Medicine, tandem mass tag mass spectrometry, and SOMAscan. We tested associations between age and protein levels in linear models and tested enrichment for Reactome pathways. Results: Levels of 252 proteins increased with age independently of amyloid status. These proteins were associated with immune and signaling processes. Levels of 21 proteins decreased with older age exclusively in amyloid abnormal participants and these were enriched for extracellular matrix organization. Discussion: We found amyloid-independent and -dependent CSF proteome changes with older age, perhaps representing physiological aging and early AD pathology.

15.
Front Aging Neurosci ; 14: 840651, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35386118

RESUMO

Alzheimer's disease (AD) is the most frequent neurodegenerative disease with an increasing prevalence in industrialized, aging populations. AD susceptibility has an established genetic basis which has been the focus of a large number of genome-wide association studies (GWAS) published over the last decade. Most of these GWAS used dichotomized clinical diagnostic status, i.e., case vs. control classification, as outcome phenotypes, without the use of biomarkers. An alternative and potentially more powerful study design is afforded by using quantitative AD-related phenotypes as GWAS outcome traits, an analysis paradigm that we followed in this work. Specifically, we utilized genotype and phenotype data from n = 931 individuals collected under the auspices of the European Medical Information Framework for Alzheimer's Disease Multimodal Biomarker Discovery (EMIF-AD MBD) study to perform a total of 19 separate GWAS analyses. As outcomes we used five magnetic resonance imaging (MRI) traits and seven cognitive performance traits. For the latter, longitudinal data from at least two timepoints were available in addition to cross-sectional assessments at baseline. Our GWAS analyses revealed several genome-wide significant associations for the neuropsychological performance measures, in particular those assayed longitudinally. Among the most noteworthy signals were associations in or near EHBP1 (EH domain binding protein 1; on chromosome 2p15) and CEP112 (centrosomal protein 112; 17q24.1) with delayed recall as well as SMOC2 (SPARC related modular calcium binding 2; 6p27) with immediate recall in a memory performance test. On the X chromosome, which is often excluded in other GWAS, we identified a genome-wide significant signal near IL1RAPL1 (interleukin 1 receptor accessory protein like 1; Xp21.3). While polygenic score (PGS) analyses showed the expected strong associations with SNPs highlighted in relevant previous GWAS on hippocampal volume and cognitive function, they did not show noteworthy associations with recent AD risk GWAS findings. In summary, our study highlights the power of using quantitative endophenotypes as outcome traits in AD-related GWAS analyses and nominates several new loci not previously implicated in cognitive decline.

16.
Mol Neurodegener ; 17(1): 27, 2022 03 28.
Artigo em Inglês | MEDLINE | ID: mdl-35346299

RESUMO

BACKGROUND: Increased total tau (t-tau) in cerebrospinal fluid (CSF) is a key characteristic of Alzheimer's disease (AD) and is considered to result from neurodegeneration. T-tau levels, however, can be increased in very early disease stages, when neurodegeneration is limited, and can be normal in advanced disease stages. This suggests that t-tau levels may be driven by other mechanisms as well. Because tau pathophysiology is emerging as treatment target for AD, we aimed to clarify molecular processes associated with CSF t-tau levels. METHODS: We performed a proteomic, genomic, and imaging study in 1380 individuals with AD, in the preclinical, prodromal, and mild dementia stage, and 380 controls from the Alzheimer's Disease Neuroimaging Initiative and EMIF-AD Multimodality Biomarker Discovery study. RESULTS: We found that, relative to controls, AD individuals with increased t-tau had increased CSF concentrations of over 400 proteins enriched for neuronal plasticity processes. In contrast, AD individuals with normal t-tau had decreased levels of these plasticity proteins and showed increased concentrations of proteins indicative of blood-brain barrier and blood-CSF barrier dysfunction, relative to controls. The distinct proteomic profiles were already present in the preclinical AD stage and persisted in prodromal and dementia stages implying that they reflect disease traits rather than disease states. Dysregulated plasticity proteins were associated with SUZ12 and REST signaling, suggesting aberrant gene repression. GWAS analyses contrasting AD individuals with and without increased t-tau highlighted several genes involved in the regulation of gene expression. Targeted analyses of SNP rs9877502 in GMNC, associated with t-tau levels previously, correlated in individuals with AD with CSF concentrations of 591 plasticity associated proteins. The number of APOE-e4 alleles, however, was not associated with the concentration of plasticity related proteins. CONCLUSIONS: CSF t-tau levels in AD are associated with altered levels of proteins involved in neuronal plasticity and blood-brain and blood-CSF barrier dysfunction. Future trials may need to stratify on CSF t-tau status, as AD individuals with increased t-tau and normal t-tau are likely to respond differently to treatment, given their opposite CSF proteomic profiles.


Assuntos
Doença de Alzheimer , Plasticidade Neuronal , Proteínas tau , Doença de Alzheimer/líquido cefalorraquidiano , Doença de Alzheimer/patologia , Biomarcadores/líquido cefalorraquidiano , Humanos , Proteômica , Proteínas tau/líquido cefalorraquidiano
17.
J Neurol ; 269(6): 3167-3174, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34993563

RESUMO

BACKGROUND: Niemann Pick type C is an autosomal recessive lysosomal storage disorder caused by mutations in NPC1 and NPC2 genes. It is a neuro-visceral disease with a heterogeneous phenotype. Clinical features depend on the age at onset. Visceral manifestations are more prominent in the early onset (infantile) form, while neuro-psychiatric symptoms are more prominent in the late disease onset (juvenile and adult forms). METHODS: A total number of 150 patients have been screened for changes in NPC1 and NPC2 gene at the Neurology Clinic, University Clinical Centre of Serbia in the period 2012-2020. Clinical data were extracted for patients with biallelic mutations. RESULTS: Fifteen patients carried biallelic mutations in the NPC1. Out of eight different reported NPC1 variants, four are novel (c.1204_1205TT>GC, p.F402A; c.2486T>G, p.L829R; c.2795+5 G>C; c.3722T>A, p.L1241*). The mean age at the disease onset was 20.3 ± 11.9 years with the average diagnostic delay of 7.7 ± 4.3 years. Movement disorders and psychiatric or cognitive disturbances were the most common initial symptoms (in 33% and 28% patients, respectively). The average age at the first neurological manifestation was 21 ± 12.0 years. At the last examination, eye movement abnormalities (vertical slow saccades or vertical supranuclear gaze palsy), and ataxia were present in all patients, while dystonia was common (in 78.6% of patients). Presence of c.2861C>T, p.S954L mutation in homozygous state was associated with older age at the neurological symptom onset. CONCLUSIONS: Clinical findings were in line with the expected, but the diagnostic delay was common. We hypothesize that the presence of c.2861C>T, p.S954L mutation may contribute to the phenotype attenuation.


Assuntos
Doença de Niemann-Pick Tipo C , Variação Biológica da População , Diagnóstico Tardio , Humanos , Mutação/genética , Doença de Niemann-Pick Tipo C/diagnóstico , Doença de Niemann-Pick Tipo C/genética , Fenótipo , Sérvia/epidemiologia
18.
Biomedicines ; 9(11)2021 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-34829839

RESUMO

BACKGROUND: physiological differences between males and females could contribute to the development of Alzheimer's Disease (AD). Here, we examined metabolic pathways that may lead to precision medicine initiatives. METHODS: We explored whether sex modifies the association of 540 plasma metabolites with AD endophenotypes including diagnosis, cerebrospinal fluid (CSF) biomarkers, brain imaging, and cognition using regression analyses for 695 participants (377 females), followed by sex-specific pathway overrepresentation analyses, APOE ε4 stratification and assessment of metabolites' discriminatory performance in AD. RESULTS: In females with AD, vanillylmandelate (tyrosine pathway) was increased and tryptophan betaine (tryptophan pathway) was decreased. The inclusion of these two metabolites (area under curve (AUC) = 0.83, standard error (SE) = 0.029) to a baseline model (covariates + CSF biomarkers, AUC = 0.92, SE = 0.019) resulted in a significantly higher AUC of 0.96 (SE = 0.012). Kynurenate was decreased in males with AD (AUC = 0.679, SE = 0.046). CONCLUSIONS: metabolic sex-specific differences were reported, covering neurotransmission and inflammation pathways with AD endophenotypes. Two metabolites, in pathways related to dopamine and serotonin, were associated to females, paving the way to personalised treatment.

19.
Proteomes ; 9(3)2021 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-34449748

RESUMO

We recently discovered three distinct pathophysiological subtypes in Alzheimer's disease (AD) using cerebrospinal fluid (CSF) proteomics: one with neuronal hyperplasticity, a second with innate immune system activation, and a third subtype with blood-brain barrier dysfunction. It remains unclear whether AD proteomic subtype profiles are a consequence of amyloid aggregation, or might exist upstream from aggregated amyloid. We studied this question in 127 older individuals with intact cognition and normal AD biomarkers in two independent cohorts (EMIF-AD MBD and ADNI). We clustered 705 proteins measured in CSF that were previously related to AD. We identified in these cognitively intact individuals without AD pathology three subtypes: two subtypes were seen in both cohorts (n = 49 with neuronal hyperplasticity and n = 44 with blood-brain barrier dysfunction), and one only in ADNI (n = 12 with innate immune activation). The proteins specific for these subtypes strongly overlapped with AD subtype protein profiles (overlap coefficients 92%-71%). Longitudinal p181-tau and amyloid ß 1-42 (Aß42) CSF analysis showed that in the hyperplasticity subtype p181-tau increased (ß = 2.6 pg/mL per year, p = 0.01) and Aß42 decreased over time (ß = -4.4 pg/mL per year, p = 0.03), in the innate immune activation subtype p181-tau increased (ß = 3.1 pg/mL per year, p = 0.01) while in the blood-brain barrier dysfunction subtype Aß42 decreased (ß = -3.7 pg/mL per year, p = 0.009). These findings suggest that AD proteomic subtypes might already manifest in cognitively normal individuals and may predispose for AD before amyloid has reached abnormal levels.

20.
Mov Disord ; 36(7): 1499-1510, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34396589

RESUMO

This Movement Disorder Society Genetic mutation database Systematic Review focuses on monogenic atypical parkinsonism with mutations in the ATP13A2, DCTN1, DNAJC6, FBXO7, SYNJ1, and VPS13C genes. We screened 673 citations and extracted genotypic and phenotypic data for 140 patients (73 families) from 77 publications. In an exploratory fashion, we applied an automated classification procedure via an ensemble of bootstrap-aggregated ("bagged") decision trees to distinguish these 6 forms of monogenic atypical parkinsonism and found a high accuracy of 86.5% (95%CI, 86.3%-86.7%) based on the following 10 clinical variables: age at onset, spasticity and pyramidal signs, hypoventilation, decreased body weight, minimyoclonus, vertical gaze palsy, autonomic symptoms, other nonmotor symptoms, levodopa response quantification, and cognitive decline. Comparing monogenic atypical with monogenic typical parkinsonism using 2063 data sets from Movement Disorder Society Genetic mutation database on patients with SNCA, LRRK2, VPS35, Parkin, PINK1, and DJ-1 mutations, the age at onset was earlier in monogenic atypical parkinsonism (24 vs 40 years; P = 1.2647 × 10-12) and levodopa response less favorable than in patients with monogenic typical presentations (49% vs 93%). In addition, we compared monogenic to nonmonogenic atypical parkinsonism using data from 362 patients with progressive supranuclear gaze palsy, corticobasal degeneration, multiple system atrophy, or frontotemporal lobar degeneration. Although these conditions share many clinical features with the monogenic atypical forms, they can typically be distinguished based on their later median age at onset (64 years; IQR, 57-70 years). In conclusion, age at onset, presence of specific signs, and degree of levodopa response inform differential diagnostic considerations and genetic testing indications in atypical forms of parkinsonism. © 2021 International Parkinson and Movement Disorder Society.


Assuntos
Doença de Parkinson , Transtornos Parkinsonianos , Genótipo , Humanos , Levodopa , Transtornos Parkinsonianos/genética , Fenótipo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA