Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Ontogenez ; 45(6): 434-41, 2014.
Artigo em Russo | MEDLINE | ID: mdl-25739301

RESUMO

Using C-banding and FISH methods, the karyotype of MC1611 induced mutant of bread wheat, which develop additional spikelets at a rachis node (trait "supernumerary spikelets") was characterized. It was determined that the mutant phenotype is not associated with aneuploidy and major chromosomal rearrangements. The results of genetic analysis showed that supernumerary spikelets of the line are caused by a mutation of the single bh-D. 1 gene, influenced by the genetic background. The mutation causes abnormalities of inflorescence morphogenesis associated with the development of ectopic spikelet meristems in place of floral meristems in the basal part of the spikelets, causing the appearance of additional spikes at a rachis node. The mutant phenotype suggests that the Bh-D gene determines the fate of the lateral meristem in ear, which develops as floral meristem and gives rise to floral organs in wild-type inflorescences. In the Bh-D. 1 mutant, the establishing identity is impaired. The characterized mutant can be used in further studies on molecular genetic basis of development of wheat inflorescence.


Assuntos
Cromossomos de Plantas , Flores , Meristema , Morfogênese/genética , Mutação , Triticum , Bandeamento Cromossômico , Cromossomos de Plantas/genética , Cromossomos de Plantas/metabolismo , Flores/embriologia , Flores/genética , Cariótipo , Meristema/genética , Meristema/metabolismo , Triticum/embriologia , Triticum/genética
2.
Genetika ; 48(8): 926-33, 2012 Aug.
Artigo em Russo | MEDLINE | ID: mdl-23035544

RESUMO

The chromosome composition of the blue-grain line i:S29Ba of the cultivar Saratovskaya 29 was identified by cytological, GISH, and microsatellite analyses and C-banding. It was found that common wheat chromosome 4B of the cultivar Saratovskaya 29 was substituted with the Agropyron elongatum Host. chromosome carrying the gene for blue grain (s:S294Ag(4B)) during the construction of this nearly isogenic line. The blue-grain line was tested for productivity. The substitution of total chromosome 4B of the cultivar Saratovskaya 29 by Ag. elongatum chromosome 4 did not significantly affect the spike productivity parameters and grain quality with the exception of spike length (plus effect), spike density, and vitreousness (minus effects). The blue-grain line with s:S294Ag(4B) can be used in further studies associated with chromosome engineering in cereals and wheat breeding.


Assuntos
Cruzamento , Cromossomos de Plantas/genética , Pigmentos Biológicos/genética , Triticum , Agropyron/citologia , Agropyron/genética , Cor , Hibridização Genética , Cariótipo , Repetições de Microssatélites , Sementes/genética , Triticum/citologia , Triticum/genética
3.
Genetika ; 48(12): 1372-9, 2012 Dec.
Artigo em Russo | MEDLINE | ID: mdl-23516898

RESUMO

The problems of fertility restoration in the progeny of barley-wheat hybrids (H. vulgare x T. aestivum) are explained by incompatibility between the cytoplasm of cultivated barley and the nuclear genome of common wheat. Suitable models for studying these problems are alloplasmic lines that combine the cytoplasm of barley and the nuclear genome of wheat. In this work, the specific features of fertility restoration in alloplasmic common wheat lines (H. vulgare)-T. aestivum were studied depending on the influence of wheat varieties Saratovskaya 29 (Sar29) and Pyrotrix 28 (Pyr28) used to produce these lines. The alloplasmic lines were created using hybrids between the 48-chromosome offspring (Amph1) of the barley-wheat amphiploid H. vulgare (ya-319) x T. aestivum (Sar29) and these wheat varieties. Backcrossing of the Amph1 (2n = 48) x Sar29 hybrid with the wheat variety Sar29 resulted in the complete sterility in the (H. vulgare)-Sar29 line, which suggests the incompatibility of the nuclear genome of the common wheat variety Sar29 with the cytoplasm of H. vulgare. Crossing of Amph1 (2n = 48) with Pyr28 resulted in the restoration of self-fertility in the hybrid with 2n = 44. In the alloplasmic lines (2n = 42) formed based on plants of the self-fertilized generations of this hybrid, the barley chromosomes were eliminated, and recombination between the nuclear genomes of the parental wheat varieties Sar29 and Pyr28 took place. Alloplasmic recombinant lines (H. vulgare)-T. aestivum with different levels of fertility were isolated. As was shown by the SSR analysis, differences in the fertility traits between these lines are determined by variations in the content of the genetic material from the wheat varieties Sar29 and Pyr28. The complete restoration of fertility in these alloplasmic recombinant lines is accompanied by the formation of a nuclear genome in which the genetic material of Pyr28 significantly prevails. The conclusion is made that the common wheat variety Pyrotrix 28 is a carrier of a gene (or genes), which determines the restoration of common wheat fertility on the cytoplasm of cultivated barley.


Assuntos
Fertilidade/genética , Hordeum/genética , Hibridização Genética , Triticum/genética , Cromossomos de Plantas , Cruzamentos Genéticos , Citoplasma , Fertilidade/fisiologia , Genoma de Planta , Endogamia , Poliploidia , Autofertilização
4.
Genetika ; 45(9): 1211-6, 2009 Sep.
Artigo em Russo | MEDLINE | ID: mdl-19824541

RESUMO

Regulation of meiotic restitution in androgenic haploids generated by cultivation of isolated pollinators of three wheat-rye substitution lines 2R(2D)1, 2R(2D)3, and 6R(6A) (Triticum aestivum L., cultivar Saratovskaya 29/Secale cereale L., cultivar Onokhoiskaya) was studied. The presence of rye chromosomes and the absence of homeologous wheat chromosomes in the haploid plant genome was shown to cause meiotic restitution, as observed in the case of androgenic haploids 6R(6A), or to inhibit in--in meiosis of haploids 2R(2D)1 and 2R(2D)3. In haploids of lines 2R(2D)1 and 2R(2D)3, the reductional type of division of univalent chromosomes was observed, leading to preferential formation of tetrads. In haploids of line 6R(6A), the equational type of division of univalents into sister chromatids, resulting in the block of the second division and formation of diads in approximately 50% of cells, was detected. These results confirm data on the effect of the genotype of line 2R(2D)1 on the induction of reductional type division of univalents and two-phase meiosis, which were earlier obtained in studies of meiosis in polyhaploids 2R(2D)1 x S. cereale L., cultivar Onokhoiskaya.


Assuntos
Quimera/genética , Cromossomos de Plantas/genética , Haploidia , Meiose/genética , Secale/genética , Triticum/genética , Quimera/metabolismo , Cromossomos de Plantas/metabolismo , Secale/metabolismo , Triticum/metabolismo
5.
Genetika ; 45(11): 1548-55, 2009 Nov.
Artigo em Russo | MEDLINE | ID: mdl-20058801

RESUMO

In order to estimate synteny between A(t) and A polyploid wheat genomes belonging to different evolutionary lines (Timopheevi and Emmer), saturation of chromosome maps of Triticum timopheevii A(t) genome by molecular markers has been conducted. Totally, 179 EST-SSR and 48 genomic SSR-markers have been used with the following integration of 13 and 7 markers correspondingly into chromosome maps of A(t) genome. EST-SSR showed higher transferability and lower polymorphism than genomic SSR markers. The chromosome maps designed were compared to maps of homoeologous chromosome group of the T. aestivum A genome. No disturbances of colinearity, i.e., of the order of markers within the chromosome segments on which they had been previously mapped, were observed. According to the quantity assessment of markers amplifying in homoeologous chromosomes, the maximum divergence was detected in two groups (4A(t)/4A and 3A(t)/3A) among the seven chromosomes examined in the A(t) and A genomes. Comparison of molecular genetic mapping results with the published results of studying meiosis of F1 hybrids and the frequency of chromosomes substitution in introgressive T. aestivum x T. timopheevii lines suggest that individual chromosomes of the At and A genomes evolve differently. Translocations were shown to introduce the major impact on the divergence of 4A(t)/4A and 6A(t)/6A chromosomes, while mutations of the primary DNA structure, on the divergence of homoeologous group 3 chromosomes. The level of reorganization of other chromosomes during the evolution in the A(t) and A genomes was significantly lower.


Assuntos
Cromossomos de Plantas/genética , Evolução Molecular , Genoma de Planta/genética , Sintenia , Triticum/genética , Mapeamento Cromossômico , Etiquetas de Sequências Expressas , Marcadores Genéticos/genética , Mutação , Especificidade da Espécie
6.
Genetika ; 43(8): 1149-52, 2007 Aug.
Artigo em Russo | MEDLINE | ID: mdl-17958318

RESUMO

The study presents a continuation of the research aimed at producing of wheat-rye substitution lines based on the cross (Triticum aestivum L. x Secale sereale L.) x Triticum aestivum L., and using winter rye cultivars Vyatka and Vietnamskaya Mestnaya. In BC1F5 two lines were identified, having karyotypes in which a pair of homologous wheat chromosomes was substituted by a homeologous pair of rye chromosomes. The chromosome composition of these lines was analyzed using C-banding, GISH, and SSR markers. It was demonstrated that karyotype of each line included a single pair of rye chromosomes and lacked wheat-rye translocations. The rye chromosomes were identified, and the chromosomes of wheat, at which the substitutions occurred, were determined. The lines generated by crosses with rye of Vyatka and Vietnamskaya Mestnaya cultivars were designated 1Rv(1A) and 5Rviet(5A), respectively. Chromosome identification and classification of the lines makes it possible to use them in breeding programs and genetic studies.


Assuntos
Quimera/genética , Cromossomos de Plantas/genética , Hibridização Genética , Secale/genética , Triticum/genética , Bandeamento Cromossômico , Cariotipagem , Repetições de Microssatélites
7.
Genetika ; 42(6): 793-802, 2006 Jun.
Artigo em Russo | MEDLINE | ID: mdl-16871784

RESUMO

Based on the cross (Triticum aestivum L. x Secale cereale L.) x T. aestivum L., wheat-rye substitution lines (2n = 42) were produced with karyotypes containing, instead of a pair of homologous wheat chromosomes, a homeologous pair of rye chromosomes. The chromosome composition of these lines was described by GISH and C-banding methods, and SSR analysis. The results of genomic in situ hybridization demonstrated that karyotype of these lines included one pair of rye chromosomes each and lacked wheat--rye translocations. C-banding and SSR markers were used to identify rye chromosomes and determine the wheat chromosomes at which the substitution occurred. The lines were designated 1R(1D), 2R(2D)2, 2R(2D)3, 3R(3B), 6R(6A)2. The chromosome composition of lines IR(1A), 2R(W)1, 5R(W), 5R(5A), and 6R(W)1, which were earlier obtained according to the same scheme for crossing, was characterized using methods of telocentric analysis, GISH, C-banding, and SSR analysis. These lines were identified as 1R(1A), 2R(2D)1, 5R(5D), 5R(5A), and 6R(6A)1, C-banding of chromosomes belonging to line 1R(1A) revealed the presence of two translocated chromosomes (3DS.3DL-del. and 4AL.W) during simultaneous amplification of SSR markers located on 3DL and 4AS arms. The "combined" long arm of the newly derived chromosome 4A is assumed to be formed from the long arm of chromosome 4AS itself and a deleted segment 3DL. All examined lines are cytologically stable, except for 3R(3B), which does not affect the stability of rye 3R chromosome transfer. Chromosome identification and classification of the lines will permit them to be models for genetic studies that can be used thereafter as promising "secondary gene pools" for the purpose of plant breeding.


Assuntos
Cromossomos de Plantas , Hibridização Genética , Secale/genética , Triticum/genética , Bandeamento Cromossômico , Hibridização in Situ Fluorescente , Cariotipagem , Repetições de Microssatélites , Técnica de Amplificação ao Acaso de DNA Polimórfico , Translocação Genética
8.
Genetika ; 41(9): 1236-43, 2005 Sep.
Artigo em Russo | MEDLINE | ID: mdl-16240635

RESUMO

Hexaploid triticale (x Triticosecale Wittmack) lines were examined using molecular markers and the hybridization in situ technique. Triticale lines were generated based on wheat varieties differing by the Vrn gene systems and the earing times. Molecular analysis was performed using Xgwm and Xrms microsatellite markers with the known chromosomal localization in the common wheat Triticum aestivum, and rye Secale cereale genomes. Comparative molecular analysis of triticale lines and their parental forms showed that all lines contained A and B genomes of common wheat and also rye homeologous chromosomes. In the three lines the presence of D genome markers, mapped to the chromosomes 2D and 7D, was demonstrated. This was probably the consequence of the translocations of homeologous chromosomes from wheat genomes, which took part during the process of triticale formation. The data obtained by use of genomic in situ hybridization supported the data of molecular genetic analysis. In none of the lines wheat--rye translocations or recombinations were observed. These findings suggest that the change of the period between the seedling appearance and earing time in triticale lines compared to the initial wheat lines, resulted from the inhibitory effect of rye genome on wheat vernalization genes.


Assuntos
Cromossomos de Plantas/genética , Genes de Plantas/genética , Poliploidia , Secale/genética , Triticum/genética , Produtos Agrícolas/genética , Recombinação Genética , Especificidade da Espécie
9.
Genetika ; 39(8): 1073-80, 2003 Aug.
Artigo em Russo | MEDLINE | ID: mdl-14515464

RESUMO

The effect of individual rye chromosomes on the induction of callus and the character of its regenerating capacity was studied with cultured immature embryos of wheat-rye (Triticum aestivum L. cv. Saratovskaya 29-Secale cereale L. cv. Onokhoiskaya) substitution lines. The genotypic diversity of the substitution lines proved to significantly affect variation of parameters characterizing the major types of callus cultures, that is, frequencies of embryogenic calli, which are capable of shoot regeneration, and of morphogenic calli, which produce root structures. Functioning in the genotypic background of common wheat cultivar Saratovskaya, chromosomes 2R and 3R of rye cultivar Onokhoiskaya stimulated significantly the induction of embryogenic callus highly capable of shoot regeneration. Rye chromosome 2R present in place of chromosome 2D in the common wheat genome suppressed the induction of callus producing root structures. Rye chromosomes 1R and 6R suppressed the induction of embryogenic callus capable of shoot regeneration.


Assuntos
Cromossomos de Plantas , Brotos de Planta/fisiologia , Secale/genética , Triticum/genética , Técnicas de Cultura/métodos , Regeneração , Secale/fisiologia , Sementes , Especificidade da Espécie , Triticum/fisiologia
10.
Genetika ; 39(4): 570-4, 2003 Apr.
Artigo em Russo | MEDLINE | ID: mdl-12760260

RESUMO

The effects of rye chromosomes 1R and 5R on androgenesis in cultured anthers of wheat--rye substitution lines was studied as dependent on the cultivar origin of the rye chromosomes and on the wheat genome (A or D) subjected to substitution. Chromosome 1R stimulated embryogenesis in anther cultures, while chromosome 5R suppressed it regardless of whether the corresponding wheat chromosomes were substituted in the A or D genome. The effect of chromosome 1R on embryogenesis proved to depend on its cultivar origin. Along with rye chromosome 1R, wheat chromosome 1A was shown to substantially affect total seedling regeneration. Regeneration of green seedlings was dramatically affected both by rye chromosome 1R and by wheat chromosome 1D. The results supported the published data that individual androgenesis parameters (embryogenesis, total plant regeneration, green plant regeneration) are controlled by different genetic mechanisms.


Assuntos
Secale/genética , Triticum/genética , Quimera/genética , Cromossomos de Plantas , Regeneração , Secale/embriologia , Especificidade da Espécie , Triticum/embriologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA