Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 58
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Biochim Biophys Acta Mol Cell Res ; 1871(1): 119608, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37852324

RESUMO

Stearoyl-CoA desaturase 1 (SCD1) is an enzyme that is involved in the regulation of lipolysis in the heart. SCD1 also affects epigenetic mechanisms, such as DNA and histone modifications, in various tissues. Both epigenetic modifications and changes in lipid metabolism are involved in the heart's response to hypoxia. The present study tested the hypothesis that SCD1 and epigenetic modifications interact to control lipolysis in cardiomyocytes under normoxic and hypoxic conditions. We found that the inhibition of SCD1 activity and loss of SCD1 expression reduced global DNA methylation levels, DNA methyltransferase (DNMT) activity, and DNMT1 expression in HL-1 cardiomyocytes and the mouse heart. We also found that the inhibition of adipose triglyceride lipase is involved in the control of global DNA methylation levels in cardiomyocytes in an SCD1-independent manner. Additionally, SCD1 inhibition reduced expression of the hormone-sensitive lipase (Lipe) gene through an increase in methylation of the Lipe gene promoter. Under hypoxic conditions, SCD1 inhibition abolished hypoxia-inducible transcription factor 1α, likely through decreases in histone deacetylase, protein kinase A, and abhydrolase domain containing 5 protein levels, leading to the attenuation of DNA hypomethylation by DNMT1. Hypoxia led to demethylation of the Lipe promoter in cardiomyocytes with SCD1 inhibition, which increased Lipe expression. These results indicate that SCD1 is involved in the control of epigenetic mechanisms in the heart and may affect Lipe expression through changes in methylation in its promoter region. Therefore, SCD1 may be considered a key player in the epigenetic response to normoxia and hypoxia in cardiomyocytes.


Assuntos
Miócitos Cardíacos , Esterol Esterase , Animais , Camundongos , DNA , Epigênese Genética , Expressão Gênica , Hipóxia/metabolismo , Miócitos Cardíacos/metabolismo , Esterol Esterase/metabolismo
2.
J Cardiovasc Pharmacol Ther ; 28: 10742484231213175, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37946524

RESUMO

Background: The aging process is accompanied by the weakening of the protective systems of the organism, in particular by the decrease in the expression of ATP-sensitive potassium (KATP) channels and in the synthesis of H2S. The aim of our work was to investigate the role of KATP channels in the cardioprotection induced by pyridoxal-5-phosphate (PLP) in aging. Methods: Experiments were performed on adult and old (aged 24 months) male Wistar rats, which were divided into 3 groups: adults, old, and old PLP-treated rats. PLP was administered orally once a day for 14 days at a dose of 0.7 mg/kg. The levels of mRNA expression of subunits KATP channels were determined by reverse transcription and real-time polymerase chain reaction analysis. Protein expression levels were determined by the Western blot. Cardiac tissue morphology was determined using transverse 6 µm deparaffinized sections stained with picrosirius red staining. Vasorelaxation responses of isolated aortic rings and the function of Langendorff-perfused isolated hearts during ischemia-reperfusion, H2S levels, and markers of oxidative stress were also studied. Results: Administration of PLP to old rats reduces cardiac fibrosis and improves cardiac function during ischemia-reperfusion and vasorelaxation responses to KATP channels opening. At the same time, there was a significant increase in mRNA and protein expression of SUR2 and Kir6.1 subunits of KATP channels, H2S production, and reduced markers of oxidative stress. The specific KATP channel inhibitor-glibenclamide prevented the enhancement of vasodilator responses and anti-ischemic protection in PLP-treated animals. Conclusions: We suggest that this potential therapeutic effect of PLP in old animals may be a result of increased expression of KATP channels and H2S production.


Assuntos
Canais KATP , Vasodilatação , Ratos , Masculino , Animais , Canais KATP/metabolismo , Ratos Wistar , Regulação para Cima , Trifosfato de Adenosina , Isquemia , RNA Mensageiro , Fosfatos/metabolismo , Piridoxal
3.
J Cell Physiol ; 238(12): 2888-2903, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37814830

RESUMO

Increases in fatty acid (FA) biosynthesis meet the higher lipid demand by intensely proliferating cancer cells and promoting their progression. Stearoyl-CoA desaturase 1 (SCD1) is the key enzyme in FA biosynthesis, converting saturated FA (SFA) into monounsaturated FA (MUFA). Increases in the MUFA/SFA ratio and SCD1 expression have been observed in cancers of various origins and correlate with their aggressiveness. However, much is still unknown about the SCD1-dependent molecular mechanisms that promote specific changes in metabolic pathways of cancer cells. The present study investigated the involvement of SCD1 in shaping glucose and lipid metabolism in colorectal cancer (CRC) cells. Excess FAs that derive from de novo lipogenesis are stored in organelles, called lipid droplets (LDs), mainly in the form of triacylglycerol (TAG) and cholesteryl esters. LD accumulation is associated with key features of cancer development and progression. Consistent with our findings, the pharmacological inhibition of SCD1 activity affects CRC cell viability and impairs TAG accumulation and LD formation in these cells through the activation of lipolytic and lipophagic pathways. We showed that SCD1 suppression affects crucial lipogenic processes that promote lipid accumulation in CRC cells but in a sterol regulatory element-binding protein 1-independent manner. We propose that adenosine monophosphate-activated protein kinase contributes to these changes through the activation of lipolysis and inhibition of TAG synthesis. We also provide evidence of the involvement of SCD1 in the regulation of glucose uptake and utilization in CRC cells. These findings underscore the importance of SCD1 in regulating cellular processes that promote cancer development and progression.


Assuntos
Neoplasias Colorretais , Estearoil-CoA Dessaturase , Humanos , Neoplasias Colorretais/metabolismo , Ácidos Graxos/metabolismo , Gotículas Lipídicas/metabolismo , Metabolismo dos Lipídeos/fisiologia , Estearoil-CoA Dessaturase/genética , Estearoil-CoA Dessaturase/metabolismo , Triglicerídeos/metabolismo , Linhagem Celular Tumoral
4.
Int J Mol Sci ; 24(6)2023 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-36982607

RESUMO

Stearoyl-CoA desaturase is a rate-limiting enzyme in the synthesis of monounsaturated fatty acids. Monounsaturated fatty acids limit the toxicity of exogenous saturated fats. Studies have shown that stearoyl-CoA desaturase 1 is involved in the remodeling of cardiac metabolism. The loss of stearoyl-CoA desaturase 1 reduces fatty acid oxidation and increases glucose oxidation in the heart. Such a change is protective under conditions of a high-fat diet, which reduces reactive oxygen species-generating ß-oxidation. In contrast, stearoyl-CoA desaturase 1 deficiency predisposes individuals to atherosclerosis under conditions of hyperlipidemia but protects against apnea-induced atherosclerosis. Stearoyl-CoA desaturase 1 deficiency also impairs angiogenesis after myocardial infarction. Clinical data show a positive correlation between blood stearoyl-CoA Δ-9 desaturation rates and cardiovascular disease and mortality. Moreover, stearoyl-CoA desaturase inhibition is considered an attractive intervention in some obesity-associated pathologies, and the importance of stearoyl-CoA desaturase in the cardiovascular system might be a limitation for developing such therapy. This review discusses the role of stearoyl-CoA desaturase 1 in the regulation of cardiovascular homeostasis and the development of heart disease and presents markers of systemic stearoyl-CoA desaturase activity and their predictive potential in the diagnosis of cardiovascular disorders.


Assuntos
Ácidos Graxos , Estearoil-CoA Dessaturase , Humanos , Estearoil-CoA Dessaturase/metabolismo , Ácidos Graxos/metabolismo , Coração , Ácidos Graxos Monoinsaturados/metabolismo , Fenômenos Fisiológicos Cardiovasculares
5.
Acta Physiol (Oxf) ; 237(3): e13912, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36599355

RESUMO

The WNT/ß-catenin pathway is a master regulator of cardiac development and growth, and its activity is low in healthy adult hearts. However, even this low activity is essential for maintaining normal heart function. Acute activation of the WNT/ß-catenin signaling cascade is considered to be cardioprotective after infarction through the upregulation of prosurvival genes and reprogramming of metabolism. Chronically high WNT/ß-catenin pathway activity causes profibrotic and hypertrophic effects in the adult heart. New data suggest more complex functions of ß-catenin in metabolic maturation of the perinatal heart, establishing an adult pattern of glucose and fatty acid utilization. Additionally, low basal activity of the WNT/ß-catenin cascade maintains oxidative metabolism in the adult heart, and this pathway is reactivated by physiological or pathological stimuli to meet the higher energy needs of the heart. This review summarizes the current state of knowledge of the organization of canonical WNT signaling and its function in cardiogenesis, heart maturation, adult heart function, and remodeling. We also discuss the role of the WNT/ß-catenin pathway in cardiac glucose, lipid metabolism, and mitochondrial physiology.


Assuntos
Miocárdio , Via de Sinalização Wnt , beta Catenina , Adulto , Feminino , Humanos , Gravidez , beta Catenina/metabolismo , Coração , Metabolismo dos Lipídeos , Via de Sinalização Wnt/fisiologia , Miocárdio/metabolismo
6.
Cells ; 11(19)2022 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-36230994

RESUMO

Disturbances in cardiac lipid metabolism are associated with the development of cardiac hypertrophy and heart failure. Spontaneously hypertensive rats (SHRs), a genetic model of primary hypertension and pathological left ventricular (LV) hypertrophy, have high levels of diacylglycerols in cardiomyocytes early in development. However, the exact effect of lipids and pathways that are involved in their metabolism on the development of cardiac dysfunction in SHRs is unknown. Therefore, we used SHRs and Wistar Kyoto (WKY) rats at 6 and 18 weeks of age to analyze the impact of perturbations of processes that are involved in lipid synthesis and degradation in the development of LV hypertrophy in SHRs with age. Triglyceride levels were higher, whereas free fatty acid (FA) content was lower in the LV in SHRs compared with WKY rats. The expression of de novo FA synthesis proteins was lower in cardiomyocytes in SHRs compared with corresponding WKY controls. The higher expression of genes that are involved in TG synthesis in 6-week-old SHRs may explain the higher TG content in these rats. Adenosine monophosphate-activated protein kinase phosphorylation and peroxisome proliferator-activated receptor α protein content were lower in cardiomyocytes in 18-week-old SHRs, suggesting a lower rate of ß-oxidation. The decreased protein content of α/ß-hydrolase domain-containing 5, adipose triglyceride lipase (ATGL) activator, and increased content of G0/G1 switch protein 2, ATGL inhibitor, indicating a lower rate of lipolysis in the heart in SHRs. In conclusion, the present study showed that the development of LV hypertrophy and myocardial dysfunction in SHRs is associated with triglyceride accumulation, attributable to a lower rate of lipolysis and ß-oxidation in cardiomyocytes.


Assuntos
Hipertrofia Ventricular Esquerda , Metabolismo dos Lipídeos , Monofosfato de Adenosina/farmacologia , Animais , Diglicerídeos/metabolismo , Ácidos Graxos não Esterificados/metabolismo , Hipertrofia Ventricular Esquerda/metabolismo , Hipertrofia Ventricular Esquerda/patologia , Lipase/metabolismo , Miócitos Cardíacos/metabolismo , PPAR alfa/metabolismo , Proteínas Quinases/metabolismo , Ratos , Ratos Endogâmicos SHR , Ratos Endogâmicos WKY , Triglicerídeos/metabolismo
7.
Int J Mol Sci ; 23(18)2022 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-36142371

RESUMO

New blood vessel formation is a key component of the cardiac repair process after myocardial infarction (MI). Hypoxia following MI is a major driver of angiogenesis in the myocardium. Hypoxia-inducible factor 1α (HIF1α) is the key regulator of proangiogenic signaling. The present study found that stearoyl-CoA desaturase (SCD) significantly contributed to the induction of angiogenesis in the hypoxic myocardium independently of HIF1α expression. The pharmacological inhibition of SCD activity in HL-1 cardiomyocytes and SCD knockout in an animal model disturbed the expression and secretion of proangiogenic factors including vascular endothelial growth factor-A, proinflammatory cytokines (interleukin-1ß, interleukin-6, tumor necrosis factor α, monocyte chemoattractant protein-1, and Rantes), metalloproteinase-9, and platelet-derived growth factor in ischemic cardiomyocytes. These disturbances affected the proangiogenic potential of ischemic cardiomyocytes after SCD depletion. Together with the most abundant SCD1 isoform, the heart-specific SCD4 isoform emerged as an important regulator of new blood vessel formation in the murine post-MI myocardium. We also provide evidence that SCD shapes energy metabolism of the ischemic heart by maintaining the shift from fatty acids to glucose as the substrate that is used for adenosine triphosphate production. Furthermore, we propose that the regulation of the proangiogenic properties of hypoxic cardiomyocytes by key modulators of metabolic signaling such as adenosine monophosphate kinase, protein kinase B (AKT), and peroxisome-proliferator-activated receptor-γ coactivator 1α/peroxisome proliferator-activated receptor α depends on SCD to some extent. Thus, our results reveal a novel mechanism that links SCD to cardiac repair processes after MI.


Assuntos
Infarto do Miocárdio , Estearoil-CoA Dessaturase , Monofosfato de Adenosina/metabolismo , Trifosfato de Adenosina/metabolismo , Animais , Quimiocina CCL2/metabolismo , Quimiocina CCL5/metabolismo , Metabolismo Energético , Ácidos Graxos/metabolismo , Glucose/metabolismo , Hipóxia/metabolismo , Interleucina-1beta/metabolismo , Interleucina-6/metabolismo , Camundongos , Infarto do Miocárdio/metabolismo , Miócitos Cardíacos/metabolismo , PPAR alfa/metabolismo , Fator de Crescimento Derivado de Plaquetas/metabolismo , Isoformas de Proteínas/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Estearoil-CoA Dessaturase/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo
8.
Int J Mol Sci ; 23(8)2022 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-35457189

RESUMO

Coenzyme A (CoA) and its thioester derivatives are crucial components of numerous biosynthetic and degradative pathways of the cellular metabolism (including fatty acid synthesis and oxidation, the Krebs cycle, ketogenesis, cholesterol and acetylcholine biosynthesis, amino acid degradation, and neurotransmitter biosynthesis), post-translational modifications of proteins, and the regulation of gene expression [...].


Assuntos
Coenzima A , Proteínas , Coenzima A/metabolismo , Corpos Cetônicos , Oxirredução , Processamento de Proteína Pós-Traducional , Proteínas/metabolismo
9.
Life (Basel) ; 11(7)2021 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-34209822

RESUMO

Glutathione (GSH) is essential for antioxidant defence, and its depletion is associated with tissue damage during cardiac ischemia-reperfusion (I/R). GSH is synthesized by the glutamate-cysteine ligase enzyme (GCL) from L-cysteine, which alternatively might be used for hydrogen sulfide production by cystathionine-gamma-lyase (CSE). Here, we have investigated whether in vivo treatment with L-cysteine and an inhibitor of CSE,D,L-propargylglycine (PAG), can modulate cardiac glutathione and whether this treatment can influence heart resistance to I/R in a Langendorff isolated rat hearts model. Pretreatment with PAG + L-cysteine manifested in pronounced cardioprotection, as there was complete recovery of contractile function; preserved constitutive NOS activity; and limited the production of reactive oxygen and nitrogen species in the ischemized myocardium. Cardiac GSH and GSSG levels were increased by 3.5- and 2.1-fold in PAG + L-cysteine hearts and were 3.3- and 3.6-fold higher in PAG + L-cysteine + I/R compared to I/R heart. The cardioprotective effect of PAG + L-cysteine was completely abolished by an inhibitor of GCL, DL-buthionine-(S,R)-sulfoximine. Further analysis indicated diminished fatty acid ß-oxidation, increased glucose consumption and anaerobic glycolysis, and promoted OXPHOS proteins and SERCA2 in PAG + L-cysteine + I/R compared to the I/R group. PAG + L-cysteine inhibited PPARα and up-regulated AMPK signalling in the heart. Thus, induction of glutathione synthesis provided cardioprotection regulating NO, AMPK and PPARa signaling in ischemic rat hearts.

10.
Mitochondrion ; 60: 59-69, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34303005

RESUMO

ß-Catenin signaling pathway regulates cardiomyocytes proliferation and differentiation, though its involvement in metabolic regulation of cardiomyocytes remains unknown. We used one-day-old mice with cardiac-specific knockout of ß-catenin and neonatal rat ventricular myocytes treated with ß-catenin inhibitor to investigate the role of ß-catenin metabolism regulation in perinatal cardiomyocytes. Transcriptomics of perinatal ß-catenin-ablated hearts revealed a dramatic shift in the expression of genes involved in metabolic processes. Further analysis indicated an inhibition of lipolysis and glycolysis in both in vitro and in vivo models. Finally, we showed that ß-catenin deficiency leads to mitochondria dysfunction via the downregulation of Sirt1/PGC-1α pathway. We conclude that cardiac-specific ß-catenin ablation disrupts the energy substrate shift that is essential for postnatal heart maturation, leading to perinatal lethality of homozygous ß-catenin knockout mice.


Assuntos
Metabolismo Energético/genética , Metabolismo Energético/fisiologia , Deleção de Genes , Mitocôndrias/metabolismo , Miócitos Cardíacos/metabolismo , beta Catenina/metabolismo , Animais , Animais Recém-Nascidos , Regulação para Baixo , Camundongos , Camundongos Knockout , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/genética , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/metabolismo , Sirtuína 1/genética , Sirtuína 1/metabolismo , beta Catenina/genética
11.
Cells ; 10(6)2021 06 12.
Artigo em Inglês | MEDLINE | ID: mdl-34204799

RESUMO

Studies of adipose tissue biology have demonstrated that adipose tissue should be considered as both passive, energy-storing tissue and an endocrine organ because of the secretion of adipose-specific factors, called adipokines. Adiponectin is a well-described homeostatic adipokine with metabolic properties. It regulates whole-body energy status through the induction of fatty acid oxidation and glucose uptake. Adiponectin also has anti-inflammatory and antidiabetic properties, making it an interesting subject of biomedical studies. Perivascular adipose tissue (PVAT) is a fat depot that is conterminous to the vascular wall and acts on it in a paracrine manner through adipokine secretion. PVAT-derived adiponectin can act on the vascular wall through endothelial cells and vascular smooth muscle cells. The present review describes adiponectin's structure, receptors, and main signaling pathways. We further discuss recent studies of the extent and nature of crosstalk between PVAT-derived adiponectin and endothelial cells, vascular smooth muscle cells, and atherosclerotic plaques. Furthermore, we argue whether adiponectin and its receptors may be considered putative therapeutic targets.


Assuntos
Adiponectina/metabolismo , Tecido Adiposo/metabolismo , Vasos Sanguíneos/metabolismo , Homeostase/fisiologia , Animais , Aterosclerose/metabolismo , Vasos Sanguíneos/patologia , Células Endoteliais/metabolismo , Humanos , Músculo Liso Vascular/metabolismo
12.
Int J Mol Sci ; 22(1)2020 Dec 24.
Artigo em Inglês | MEDLINE | ID: mdl-33374300

RESUMO

Stearoyl-CoA desaturase 1 (SCD1), an enzyme that is involved in the biosynthesis of monounsaturated fatty acids, induces the reprogramming of cardiomyocyte metabolism. Thyroid hormones (THs) activate both lipolysis and lipogenesis. Many genes that are involved in lipid metabolism, including Scd1, are regulated by THs. The present study used SCD1 knockout (SCD1-/-) mice to test the hypothesis that THs are important factors that mediate the anti-steatotic effect of SCD1 downregulation in the heart. SCD1 deficiency decreased plasma levels of thyroid-stimulating hormone and thyroxine and the expression of genes that regulate intracellular TH levels (i.e., Slc16a2 and Dio1-3) in cardiomyocytes. Both hypothyroidism and SCD1 deficiency affected genomic and non-genomic TH pathways in the heart. SCD1 deficiency is known to protect mice from genetic- or diet-induced obesity and decrease lipid content in the heart. Interestingly, hypothyroidism increased body adiposity and triglyceride and diacylglycerol levels in the heart in SCD1-/- mice. The accumulation of triglycerides in cardiomyocytes in SCD1-/- hypothyroid mice was caused by the activation of lipogenesis, which likely exceeded the upregulation of lipolysis and fatty acid oxidation. Lipid accumulation was also observed in the heart in wildtype hypothyroid mice compared with wildtype control mice, but this process was related to a reduction of triglyceride lipolysis and fatty acid oxidation. We also found that simultaneous SCD1 and deiodinase inhibition increased triglyceride content in HL-1 cardiomyocytes, and this process was related to the downregulation of lipolysis. Altogether, the present results suggest that THs are an important part of the mechanism of SCD1 in cardiac lipid utilization and may be involved in the upregulation of energetic metabolism that is associated with SCD1 deficiency.


Assuntos
Regulação para Baixo , Regulação Enzimológica da Expressão Gênica , Metabolismo dos Lipídeos , Miocárdio/metabolismo , Estearoil-CoA Dessaturase/biossíntese , Tireotropina/metabolismo , Tiroxina/metabolismo , Animais , Camundongos , Camundongos Knockout , Estearoil-CoA Dessaturase/genética , Tireotropina/genética , Tiroxina/genética
13.
Life (Basel) ; 10(12)2020 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-33348907

RESUMO

The role of canonical Wnt signaling in metabolic regulation and development of physiological cardiac hypertrophy remains largely unknown. To explore the function of ß-catenin in the regulation of cardiac metabolism and physiological cardiac hypertrophy development, we used mice heterozygous for cardiac-specific ß-catenin knockout that were subjected to a swimming training model. ß-Catenin haploinsufficient mice subjected to endurance training displayed a decreased ß-catenin transcriptional activity, attenuated cardiomyocytes hypertrophic growth, and enhanced activation of AMP-activated protein kinase (AMPK), phosphoinositide-3-kinase-Akt (Pi3K-Akt), and mitogen-activated protein kinase/extracellular signal-regulated kinases 1/2 (MAPK/Erk1/2) signaling pathways compared to trained wild type mice. We further observed an increased level of proteins involved in glucose aerobic metabolism and ß-oxidation along with perturbed activity of mitochondrial oxidative phosphorylation complexes (OXPHOS) in trained ß-catenin haploinsufficient mice. Taken together, Wnt/ß-catenin signaling appears to govern metabolic regulatory programs, sustaining metabolic plasticity in adult hearts during the adaptation to endurance training.

14.
Antioxidants (Basel) ; 9(10)2020 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-33076261

RESUMO

Nonalcoholic fatty liver disease (NAFLD) is characterized by the development of steatosis, which can ultimately compromise liver function. Mitochondria are key players in obesity-induced metabolic disorders; however, the distinct role of hypercaloric diet constituents in hepatic cellular oxidative stress and metabolism is unknown. Male mice were fed either a high-fat (HF) diet, a high-sucrose (HS) diet or a combined HF plus HS (HFHS) diet for 16 weeks. This study shows that hypercaloric diets caused steatosis; however, the HFHS diet induced severe fibrotic phenotype. At the mitochondrial level, lipidomic analysis showed an increased cardiolipin content for all tested diets. Despite this, no alterations were found in the coupling efficiency of oxidative phosphorylation and neither in mitochondrial fatty acid oxidation (FAO). Consistent with unchanged mitochondrial function, no alterations in mitochondrial-induced reactive oxygen species (ROS) and antioxidant capacity were found. In contrast, the HF and HS diets caused lipid peroxidation and provoked altered antioxidant enzyme levels/activities in liver tissue. Our work provides evidence that hepatic oxidative damage may be caused by augmented levels of peroxisomes and consequently higher peroxisomal FAO-induced ROS in the early NAFLD stage. Hepatic damage is also associated with autophagic flux impairment, which was demonstrated to be diet-type dependent. The HS diet induced a reduction in autophagosomal formation, while the HF diet reduced levels of cathepsins. The accumulation of damaged organelles could instigate hepatocyte injuries and NAFLD progression.

15.
Int J Mol Sci ; 21(18)2020 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-32961871

RESUMO

Metabolic stress, such as lipotoxicity, affects the DNA methylation profile in pancreatic ß-cells and thus contributes to ß-cell failure and the progression of type 2 diabetes (T2D). Stearoyl-CoA desaturase 1 (SCD1) is a rate-limiting enzyme that is involved in monounsaturated fatty acid synthesis, which protects pancreatic ß-cells against lipotoxicity. The present study found that SCD1 is also required for the establishment and maintenance of DNA methylation patterns in ß-cells. We showed that SCD1 inhibition/deficiency caused DNA hypomethylation and changed the methyl group distribution within chromosomes in ß-cells. Lower levels of DNA methylation in SCD1-deficient ß-cells were followed by lower levels of DNA methyltransferase 1 (DNMT1). We also found that the downregulation of SCD1 in pancreatic ß-cells led to the activation of adenosine monophosphate-activated protein kinase (AMPK) and an increase in the activity of the NAD-dependent deacetylase sirtuin-1 (SIRT1). Furthermore, the physical association between DNMT1 and SIRT1 stimulated the deacetylation of DNMT1 under conditions of SCD1 inhibition/downregulation, suggesting a mechanism by which SCD1 exerts control over DNMT1. We also found that SCD1-deficient ß-cells that were treated with compound c, an inhibitor of AMPK, were characterized by higher levels of both global DNA methylation and DNMT1 protein expression compared with untreated cells. Therefore, we found that activation of the AMPK/SIRT1 signaling pathway mediates the effect of SCD1 inhibition/deficiency on DNA methylation status in pancreatic ß-cells. Altogether, these findings suggest that SCD1 is a gatekeeper that protects ß-cells against the lipid-derived loss of DNA methylation and provide mechanistic insights into the mechanism by which SCD1 regulates DNA methylation patterns in ß-cells and T2D-relevant tissues.


Assuntos
DNA (Citosina-5-)-Metiltransferase 1/metabolismo , Metilação de DNA , Células Secretoras de Insulina/metabolismo , Estearoil-CoA Dessaturase/metabolismo , Proteínas Quinases Ativadas por AMP/antagonistas & inibidores , Proteínas Quinases Ativadas por AMP/metabolismo , Acetilação , Animais , Linhagem Celular , Metilação de DNA/efeitos dos fármacos , Regulação para Baixo , Inativação Gênica , Histonas/metabolismo , Células Secretoras de Insulina/enzimologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , RNA Interferente Pequeno , Ratos , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética , Sirtuína 1/metabolismo , Análise Espectral Raman , Estearoil-CoA Dessaturase/antagonistas & inibidores , Estearoil-CoA Dessaturase/genética , Regulação para Cima
16.
J Cell Physiol ; 235(2): 1129-1140, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31241768

RESUMO

Stearoyl-CoA desaturase (SCD) is a rate-limiting enzyme that catalyzes the synthesis of monounsaturated fatty acids. It plays an important role in regulating skeletal muscle metabolism. Lack of the SCD1 gene increases the rate of fatty acid ß-oxidation through activation of the AMP-activated protein kinase (AMPK) pathway and the upregulation of genes that are related to fatty acid oxidation. The mechanism of AMPK activation under conditions of SCD1 deficiency has been unclear. In the present study, we found that the ablation/inhibition of SCD1 led to AMPK activation in skeletal muscle through an increase in AMP levels whereas muscle-specific SCD1 overexpression decreased both AMPK phosphorylation and the adenosine monophosphate/adenosine triphosphate (AMP/ATP) ratio. Changes in AMPK phosphorylation that were caused by SCD1 down- and upregulation affected NAD+ levels following changes in NAD+ -dependent deacetylase sirtuin-1 (SIRT1) activity and histone 3 (H3K9) acetylation and methylation status. Moreover, mice with muscle-targeted overexpression of SCD1 were more susceptible to high-fat diet-induced lipid accumulation and the development of insulin resistance compared with wild-type mice. These data show that SCD1 is involved in nucleotide (ATP and NAD+ ) metabolism and suggest that the SCD1-dependent regulation of muscle steatosis and insulin sensitivity are mediated by cooperation between AMPK- and SIRT1-regulated pathways. Altogether, the present study reveals a novel mechanism that links SCD1 with the maintenance of metabolic homeostasis and insulin sensitivity in skeletal muscle.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Nucleotídeos de Adenina/metabolismo , Histonas/metabolismo , Músculo Esquelético/metabolismo , Sirtuína 1/metabolismo , Estearoil-CoA Dessaturase/metabolismo , Proteínas Quinases Ativadas por AMP/genética , Acetilação , Animais , Linhagem Celular , Dieta Hiperlipídica , Regulação para Baixo , Regulação da Expressão Gênica , Histonas/genética , Humanos , Resistência à Insulina , Masculino , Camundongos , Camundongos Knockout , Fibras Musculares de Contração Rápida/metabolismo , Fibras Musculares de Contração Lenta/metabolismo , Sirtuína 1/genética , Estearoil-CoA Dessaturase/genética
17.
Nutrients ; 11(12)2019 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-31771244

RESUMO

Nonalcoholic fatty liver disease (NAFLD) is a common disease in Western society and ranges from steatosis to steatohepatitis to end-stage liver disease such as cirrhosis and hepatocellular carcinoma. The molecular mechanisms that are involved in the progression of steatosis to more severe liver damage in patients are not fully understood. A deeper investigation of NAFLD pathogenesis is possible due to the many different animal models developed recently. In this review, we present a comparative overview of the most common dietary NAFLD rodent models with respect to their metabolic phenotype and morphological manifestation. Moreover, we describe similarities and controversies concerning the effect of NAFLD-inducing diets on mitochondria as well as mitochondria-derived oxidative stress in the progression of NAFLD.


Assuntos
Ácidos Graxos/metabolismo , Metabolismo dos Lipídeos , Mitocôndrias Hepáticas/fisiologia , Hepatopatia Gordurosa não Alcoólica/metabolismo , Hepatopatia Gordurosa não Alcoólica/fisiopatologia , Animais , Deficiência de Colina , Diabetes Mellitus Tipo 2/complicações , Dieta Hiperlipídica/efeitos adversos , Dieta Ocidental/efeitos adversos , Açúcares da Dieta/efeitos adversos , Modelos Animais de Doenças , Progressão da Doença , Fígado Gorduroso/complicações , Camundongos , Hepatopatia Gordurosa não Alcoólica/complicações , Estresse Oxidativo , Fenótipo , Ratos , Espécies Reativas de Oxigênio , Roedores
18.
Cancers (Basel) ; 11(7)2019 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-31284458

RESUMO

A distinctive feature of cancer cells of various origins involves alterations of the composition of lipids, with significant enrichment in monounsaturated fatty acids. These molecules, in addition to being structural components of newly formed cell membranes of intensely proliferating cancer cells, support tumorigenic signaling. An increase in the expression of stearoyl-CoA desaturase 1 (SCD1), the enzyme that converts saturated fatty acids to ∆9-monounsaturated fatty acids, has been observed in a wide range of cancer cells, and this increase is correlated with cancer aggressiveness and poor outcomes for patients. Studies have demonstrated the involvement of SCD1 in the promotion of cancer cell proliferation, migration, metastasis, and tumor growth. Many studies have reported a role for this lipogenic factor in maintaining the characteristics of cancer stem cells (i.e., the population of cells that contributes to cancer progression and resistance to chemotherapy). Importantly, both the products of SCD1 activity and its direct impact on tumorigenic pathways have been demonstrated. Based on these findings, SCD1 appears to be a significant player in the development of malignant disease and may be a promising target for anticancer therapy. Numerous chemical compounds that exert inhibitory effects on SCD1 have been developed and preclinically tested. The present review summarizes our current knowledge of the ways in which SCD1 contributes to the progression of cancer and discusses opportunities and challenges of using SCD1 inhibitors for the treatment of cancer.

19.
Biochim Biophys Acta Mol Basis Dis ; 1865(10): 2753-2764, 2019 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-31255704

RESUMO

In the setting of metabolic overload, chronic elevations of free fatty acids in blood and tissues are associated with pancreatic ß-cell lipotoxicity and failure. Ultimately, obesity combined with insulin resistance increases the dysfunctional demand of ß-cells and contributes to the development of type 2 diabetes. Forkhead box O1 (FoxO1) is a potent transcriptional regulator of pancreatic ß-cell function and tolerance to lipid stress. The present study examined the effects of stearoyl-CoA desaturase 1 (SCD1)-metabolized precursors and products, notably oleic acid, on the compensatory capacity of ß-cells and their relationship with regulation of the FoxO1 and Wnt pathways. The trioleate-induced compromise of insulin sensitivity blunted the compensatory response of pancreatic ß-cells in primary rat islets. These events were associated with increases in the nuclear accumulation and transcriptional activity of FoxO1. Such effects were also observed in INS-1E cells that were subjected to oleate treatment. The overexpression of human SCD1 that was accompanied by endogenously generated oleic acid also led to an increase in the nuclear abundance of FoxO1. The mechanism of the oleate-mediated subcellular localization of FoxO1 was independent of the fatty acid receptor GPR40. Instead, the mechanism involved diversion of the active ß-catenin pool from an interaction with transcription factor 7-like 2 toward FoxO1-mediated transcription in ß-cells. Our findings identify a unique role for oleic acid in the compensatory response of pancreatic ß-cells and emphasize the importance of FoxO1 in ß-cell failure in obesity-induced insulin resistance.


Assuntos
Proteína Forkhead Box O1/metabolismo , Regulação da Expressão Gênica , Células Secretoras de Insulina/metabolismo , Ácido Oleico/metabolismo , Transporte Proteico/fisiologia , beta Catenina/metabolismo , Animais , Núcleo Celular , Diabetes Mellitus Tipo 2/metabolismo , Proteínas de Homeodomínio , Masculino , Proteínas do Tecido Nervoso/metabolismo , Ratos , Ratos Wistar , Receptores Acoplados a Proteínas G , Estearoil-CoA Dessaturase/metabolismo , Transativadores , Proteína 2 Semelhante ao Fator 7 de Transcrição/metabolismo
20.
PLoS One ; 14(2): e0213138, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30818386

RESUMO

Fatty acyl composition of cell membrane lipids, particularly the abundance of highly unsaturated docosahexaenoic fatty acid (22:6n-3, DHA), is likely to be an important predictor of basal metabolic rate (BMR). Our study was performed using two lines of laboratory mice divergently selected for either high or low BMR. We describe a novel single nucleotide polymorphism in the Fads2 gene encoding Δ6-desaturase, a key enzyme in the metabolic pathways of polyunsaturated fatty acids (PUFAs). The allele frequencies of Fads2 were significantly different in both lines of mice. The analysis of genetic distances revealed that the genetic differentiation between the two studied lines developed significantly faster at the Fads2 locus than it did at neutral loci. Such a pattern suggests that the Fads2 polymorphism is related to the variation in BMR, i.e. the direct target of selection. The Fads2 polymorphism significantly affected abundance of several PUFAs; however, the differences in PUFA composition between lines were compatible with the difference in frequency of Fads2 alleles only for DHA. We hypothesize that the polymorphism in the Fads2 gene affects the BMR through modification of DHA abundance in cell membranes. This may be the first example of a significant link between a polymorphism in a gene responsible for fatty acyl composition and variation in BMR.


Assuntos
Metabolismo Basal/genética , Ácidos Graxos Dessaturases/genética , Polimorfismo de Nucleotídeo Único , Acetiltransferases/genética , Animais , Metabolismo Basal/fisiologia , Ácidos Graxos Dessaturases/metabolismo , Elongases de Ácidos Graxos/genética , Ácidos Graxos Insaturados/metabolismo , Frequência do Gene , Deriva Genética , Genótipo , Masculino , Redes e Vias Metabólicas/genética , Camundongos , Seleção Artificial/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA