Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Polymers (Basel) ; 16(13)2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-39000669

RESUMO

Chitosan (CS) has a natural origin and is a biodegradable and biocompatible polymer with many skin-beneficial properties successfully used in the cosmetics and pharmaceutical industry. CS derivatives, especially those synthesized via a Schiff base reaction, are very important due to their unique antimicrobial activity. This study demonstrates research results on the use of hydrogel microspheres made of [chitosan-graft-poly(ε-caprolactone)]-blend-(ĸ-carrageenan)], [chitosan-2-pyridinecarboxaldehyde-graft-poly(ε-caprolactone)]-blend-(ĸ-carrageenan), and chitosan-sodium-4-formylbenzene-1,3-disulfonate-graft-poly(ε-caprolactone)]-blend-(ĸ-carrageenan) as innovative vitamin carriers for cosmetic formulation. A permeation study of retinol (vitamin A), L-ascorbic acid (vitamin C), and α-tocopherol (vitamin E) from the cream through a human skin model by the Franz Cell measurement system was presented. The quantitative analysis of the release of the vitamins added to the cream base, through the membrane, imitating human skin, showed a promising profile of its release/penetration, which is promising for the development of a cream with anti-aging properties. Additionally, the antibacterial activity of the polymers from which the microspheres are made allows for the elimination of preservatives and parabens as cosmetic formulation ingredients.

2.
Int J Mol Sci ; 25(8)2024 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-38674119

RESUMO

The aim of this work is research dedicated to the search for new bactericidal systems for use in cosmetic formulations, dermocosmetics, or the production of wound dressings. Over the last two decades, chitosan, due to its special biological activity, has become a highly indispensable biopolymer with very wide application possibilities. Reports in the literature on the antibacterial effects of chitosan are very diverse, but our research has shown that they can be successfully improved through chemical modification. Therefore, in this study, results on the synthesis of new chitosan-based Schiff bases, dCsSB-SFD and dCsSB-PCA, are obtained using two aldehydes: sodium 4-formylbenzene-1,3-disulfonate (SFD) and 2-pyridine carboxaldehyde (PCA), respectively. Chitosan derivatives synthesized in this way demonstrate stronger antimicrobial activity. Carrying out the procedure of grafting chitosan with a caproyl chain allowed obtaining compatible blends of chitosan derivatives with κ-carrageenan, which are stable hydrogels with a high swelling coefficient. Furthermore, the covalently bounded poly(ε-caprolactone) (PCL) chain improved the solubility of obtained polymers in organic solvents. In this respect, the Schiff base-containing polymers obtained in this study, with special hydrogel and antimicrobial properties, are very promising materials for potential use as a controlled-release formulation of both hydrophilic and hydrophobic drugs in cosmetic products for skin health.


Assuntos
Antibacterianos , Carragenina , Quitosana , Bases de Schiff , Quitosana/química , Quitosana/análogos & derivados , Quitosana/farmacologia , Carragenina/química , Antibacterianos/farmacologia , Antibacterianos/química , Antibacterianos/síntese química , Bases de Schiff/química , Hidrogéis/química , Testes de Sensibilidade Microbiana , Solubilidade
3.
Int J Mol Sci ; 25(5)2024 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-38473823

RESUMO

The work presents the synthesis of a series of linear polyamidoamines by polycondensation of sebacoyl dichloride with endogenous polyamines: putrescine, spermidine, spermine, and norspermidine-a biogenic polyamine not found in the human body. During the synthesis carried out via interfacial reaction, hydrophilic, semi-crystalline polymers with an average viscosity molecular weight of approximately 20,000 g/mol and a melting point of approx. 130 °C were obtained. The structure and composition of the synthesized polymers were confirmed based on NMR and FTIR studies. The cytotoxicity tests performed on human fibroblasts and keratinocytes showed that the polymers obtained with spermine and norspermidine were strongly cytotoxic, but only in high concentrations. All the other examined polymers did not show cytotoxicity even at concentrations of 2000 µg/mL. Simultaneously, the antibacterial activity of the obtained polyamides was confirmed. These polymers are particularly active against E. Coli, and virtually all the polymers obtained demonstrated a strong inhibitory effect on the growth of cells of this strain. Antimicrobial activity of the tested polymer was found against strains like Staphylococcus aureus, Staphylococcus epidermidis, and Pseudomonas aeruginosa. The broadest spectrum of bactericidal action was demonstrated by polyamidoamines obtained from spermine, which contains two amino groups in the repeating unit of the chain. The obtained polymers can be used as a material for forming drug carriers and other biologically active compounds in the form of micro- and nanoparticles, especially as a component of bactericidal creams and ointments used in dermatology or cosmetology.


Assuntos
Escherichia coli , Espermidina/análogos & derivados , Espermina , Humanos , Espermina/farmacologia , Poliaminas/farmacologia , Antibacterianos/farmacologia , Polímeros/farmacologia
4.
Int J Mol Sci ; 24(9)2023 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-37176107

RESUMO

Implant-related infections are a worldwide issue that is considered very challenging. Conventional therapies commonly end up failing; thus, new solutions are being investigated to overcome this problem. The in situ delivery of the drug at the implant site appears to be more sufficient compared to systemic antibiotic therapy. In this study, we manufactured porous zirconia scaffolds using the foam replication method. To improve their overall bioactivity, they were coated with a calcium phosphate (CaP) layer containing antibiotic-loaded degradable polymer nanoparticles (NPs) obtained by the double emulsion method to achieve the antibacterial effect additionally. Encapsulation efficiency (EE) and drug loading (DL) were superior and were equal to 99.9 ± 0.1% and 9.1 ± 0.1%, respectively. Scaffolds were analyzed with scanning electron microscopy, and their porosity was evaluated. The porosity of investigated samples was over 90% and resembled the microstructure of spongy bone. Furthermore, we investigated the cytocompatibility with osteoblast-like MG-63 cells and antimicrobial properties with Staphylococcus aureus. Scaffolds coated with a CaP layer were found non-toxic for MG-63 cells. Moreover, the presence of antibiotic-loaded nanoparticles had no significant influence on cell viability, and the obtained scaffolds inhibited bacteria growth. Provided processes of fabrication of highly porous zirconia scaffolds and surface functionalization allow minimizing the risk of implant-related infection.


Assuntos
Nanopartículas , Alicerces Teciduais , Alicerces Teciduais/química , Engenharia Tecidual/métodos , Porosidade , Gentamicinas/farmacologia , Antibacterianos/farmacologia , Nanopartículas/química , Fosfatos de Cálcio/química
5.
Int J Mol Sci ; 24(8)2023 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-37108637

RESUMO

Antibiotic resistance is one of the greatest threats to global health and food security today. It becomes increasingly difficult to treat infectious disorders because antibiotics, even the newest ones, are becoming less and less effective. One of the ways taken in the Global Plan of Action announced at the World Health Assembly in May 2015 is to ensure the prevention and treatment of infectious diseases. In order to do so, attempts are made to develop new antimicrobial therapeutics, including biomaterials with antibacterial activity, such as polycationic polymers, polypeptides, and polymeric systems, to provide non-antibiotic therapeutic agents, such as selected biologically active nanoparticles and chemical compounds. Another key issue is preventing food from contamination by developing antibacterial packaging materials, particularly based on degradable polymers and biocomposites. This review, in a cross-sectional way, describes the most significant research activities conducted in recent years in the field of the development of polymeric materials and polymer composites with antibacterial properties. We particularly focus on natural polymers, i.e., polysaccharides and polypeptides, which present a mechanism for combating many highly pathogenic microorganisms. We also attempt to use this knowledge to obtain synthetic polymers with similar antibacterial activity.


Assuntos
Anti-Infecciosos , Nanopartículas , Polímeros/química , Estudos Transversais , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Anti-Infecciosos/química
6.
Polymers (Basel) ; 15(6)2023 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-36987253

RESUMO

The article presents the results of the synthesis and characteristics of the amphiphilic block terpolymers, built of a hydrophilic polyesteramine block, and hydrophobic blocks made of lactidyl and glycolidyl units. These terpolymers were obtained during the copolymerization of L-lactide with glycolide carried out in the presence of previously produced macroinitiators with protected amine and hydroxyl groups. The terpolymers were prepared to produce a biodegradable and biocompatible material containing active hydroxyl and/or amino groups, with strong antibacterial properties and high surface wettability by water. The control of the reaction course, the process of deprotection of functional groups, and the properties of the obtained terpolymers were made based on 1H NMR, FTIR, GPC, and DSC tests. Terpolymers differed in the content of amino and hydroxyl groups. The values of average molecular mass oscillated from about 5000 g/mol to less than 15,000 g/mol. Depending on the length of the hydrophilic block and its composition, the value of the contact angle ranged from 50° to 20°. The terpolymers containing amino groups, capable of forming strong intra- and intermolecular bonds, show a high degree of crystallinity. The endotherm responsible for the melting of L-lactidyl semicrystalline regions appeared in the range from about 90 °C to close to 170 °C, with a heat of fusion from about 15 J/mol to over 60 J/mol.

7.
Int J Pharm ; 625: 122113, 2022 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-35973592

RESUMO

Dual-jet electrospinning was employed to produce two-component, partially degradable drug releasing nonwovens with interlacing of poly(D,L-lactide-co-glycolide) (PDLGA) and different poly(carbonate urethanes) (PCUs). Diclofenac sodium and sirolimus were released simultaneously from the copolyester carrier. The research focused on determining of release profiles of drugs, depending on the hydrophilicity of introduced PCU nanofibers. The influence of drugs incorporation on the hydrolytic degradation of the PDLGA and mechanical properties of nonwovens was also studied. Evaluation for interaction with cells in vitro was investigated on a fibroblast cell line in cytotoxicity and surface adhesion tests. Significant changes in drugs release rate, depending on the applied PCU were observed. It was also noticed, that hydrophilicity of drugs significantly influenced the hydrolytic degradation mechanism and surface erosion of the PDLGA, as well as the tensile strength of nonwovens. Tests carried out on cells in an in vitro experiment showed that introduction of sirolimus caused a slight reduction in the viability of fibroblasts as well as a strong limitation in their capability to colonize the surface of fibers. Due to improvement of mechanical strength and the ability to controlled drugs release, the obtained material may be considered as prospect surgical mesh implant in the treatment of hernia.


Assuntos
Anti-Infecciosos/administração & dosagem , Anti-Inflamatórios não Esteroides/administração & dosagem , Diclofenaco/administração & dosagem , Nanofibras/administração & dosagem , Sirolimo/administração & dosagem , Telas Cirúrgicas , Preparações de Ação Retardada , Materiais Dentários , Alicerces Teciduais
8.
Polymers (Basel) ; 14(3)2022 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-35160492

RESUMO

This work presents the results of research on the preparation of bioresorbable functional polyestercarbonates containing side carboxyl groups. These copolymers were synthesized in two ways: the classic two-step process involving the copolymerization of l-lactide and a cyclic carbonate containing a blocked side carboxylate group in the form of a benzyl ester (MTC-Bz) and its subsequent deprotection, and a new way involving the one-step copolymerization of l-lactide with this same carbonate, but containing an unprotected carboxyl group (MTC-COOH). Both reactions were carried out under identical conditions in the melt, using a specially selected zinc chelate complex, with Zn[(acac)(L)H2O] (where: L-N-(pyridin-4-ylmethylene) phenylalaninate ligand) as an initiator. The differences in the kinetics of both reactions and their courses were pictured. The reactivity of the MTC-COOH monomer without a blocking group in the studied co-polymerization was much higher, even slightly higher than l-lactide, which allowed the practically complete conversion of the comonomers in a much shorter time. The basic final properties of the obtained copolymers and the microstructures of their chains were determined. The single-step synthesis of biodegradable polyacids was much simpler. Contrary to the conventional method, this made it possible to obtain copolymers containing all carbonate units with carboxyl groups, without even traces of the heavy metals used in the deprotection of the carboxyl groups, the presence of which is known to be very difficult to completely remove from the copolymers obtained in the two-step process.

9.
J Mech Behav Biomed Mater ; 126: 105050, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34959096

RESUMO

A dual-jet electrospinning was used to mix a different hydrophilicity poly(carbonate urethanes) (PCUs) nanofibers with a biodegradable poly(D,L-lactide-co-glycolide) (PDLGA) copolyester microfibers. As a result, PDLGA/PCU partially degradable nonwovens consisting of an interlaced of both components fibers were obtained. In order to examine the hydrolytic degradation process of polyester fraction, as well as changes that occurred in the mechanical properties of the whole nonwovens, gel permeation chromatography, proton nuclear magnetic resonance spectroscopy, differential scanning calorimetry and scanning electron microscopy as well as static tensile test were performed. Obtained results showed that for the introduction of more hydrophobic PCU nanofibers (ChronoSil), the process of copolyester chain scission slowed down and the erosion mechanism proceeded in bulk. Unexpectedly, even greater deceleration of PDLGA fibers degradation was observed in case of more hydrophilic PCU (HydroThane), and erosion mechanism changed to surface. Enhancement the affinity of the whole nonwoven to the water, manifested by strong water uptake, facilitated the diffusion processes of both: water and acid degradation by-products, which limited autocatalysis reactions of the hydrolysis of ester bonds. On the other hand, strength tests showed the synergy in the mechanical characteristics of both components. Presented method allows influencing the mechanism and rate of polyester degradation without changing its chemical composition and physical properties, affecting only the physical interactions between the nonwoven and the degradation environment, and thus, on diffusion processes. Obtained partially degradable materials possessed also time prolonged functional properties, compared to the copolyester-only nonwoven itself, thus could be considered as promising for biomedical applications e.g. in drug release systems, implants or surgical meshes for supporting soft tissues.


Assuntos
Nanofibras , Poliésteres , Materiais Biocompatíveis , Varredura Diferencial de Calorimetria , Hidrólise , Interações Hidrofóbicas e Hidrofílicas
10.
Int J Mol Sci ; 22(13)2021 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-34203313

RESUMO

The paper presents a synthesis of poly(l-lactide) with bacteriostatic properties. This polymer was obtained by ring-opening polymerization of the lactide initiated by selected low-toxic zinc complexes, Zn[(acac)(L)H2O], where L represents N-(pyridin-4-ylmethylene) tryptophan or N-(2-pyridin-4-ylethylidene) phenylalanine. These complexes were obtained by reaction of Zn[(acac)2 H2O] and Schiff bases, the products of the condensation of amino acids and 4-pyridinecarboxaldehyde. The composition, structure, and geometry of the synthesized complexes were determined by NMR and FTIR spectroscopy, elemental analysis, and molecular modeling. Both complexes showed the geometry of a distorted trigonal bipyramid. The antibacterial and antifungal activities of both complexes were found to be much stronger than those of the primary Schiff bases. The present study showed a higher efficiency of polymerization when initiated by the obtained zinc complexes than when initiated by the zinc(II) acetylacetonate complex. The synthesized polylactide showed antibacterial properties, especially the product obtained by polymerization initiated by a zinc(II) complex with a ligand based on l-phenylalanine. The polylactide showed a particularly strong antimicrobial effect against Pseudomonas aeruginosa, Staphylococcus aureus, and Aspergillus brasiliensis. At the same time, this polymer does not exhibit fibroblast cytotoxicity.


Assuntos
Poliésteres/química , Polímeros/química , Zinco/química , Anti-Infecciosos/química , Anti-Infecciosos/farmacologia , Aspergillus/efeitos dos fármacos , Quelantes/química , Pseudomonas aeruginosa/efeitos dos fármacos , Staphylococcus aureus/efeitos dos fármacos
11.
Int J Mol Sci ; 22(9)2021 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-33925314

RESUMO

Tissue engineering is a fascinating and multidisciplinary field of science [...].


Assuntos
Engenharia Tecidual/métodos , Engenharia Tecidual/tendências , Alicerces Teciduais/tendências , Materiais Biocompatíveis , Humanos , Polímeros
12.
Polymers (Basel) ; 12(12)2020 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-33327569

RESUMO

The paper presents the formation and properties of biodegradable thermoplastic blends with triple-shape memory behavior, which were obtained by the blending and extrusion of poly(l-lactide-co-glycolide) and bioresorbable aliphatic oligoesters with side hydroxyl groups: oligo (butylene succinate-co-butylene citrate) and oligo(butylene citrate). Addition of the oligoesters to poly (l-lactide-co-glycolide) reduces the glass transition temperature (Tg) and also increases the flexibility and shape memory behavior of the final blends. Among the tested blends, materials containing less than 20 wt % of oligo (butylene succinate-co-butylene citrate) seem especially promising for biomedical applications as materials for manufacturing bioresorbable implants with high flexibility and relatively good mechanical properties. These blends show compatibility, exhibiting one glass transition temperature and macroscopically uniform physical properties.

13.
Int J Mol Sci ; 21(20)2020 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-33066080

RESUMO

Poly(l-lactide-co-glycolide) (PLGA) porous scaffolds were modified with collagen type I (PLGA/coll) or hydroxyapatite (PLGA/HAp) and implanted in rabbits osteochondral defects to check their biocompatibility and bone tissue regeneration potential. The scaffolds were fabricated using solvent casting/particulate leaching method. Their total porosity was 85% and the pore size was in the range of 250-320 µm. The physico-chemical properties of the scaffolds were evaluated using scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDX), X-ray diffractometry (XRD), X-ray photoelectron spectroscopy (XPS), Fourier transform infrared spectroscopy (FTIR), sessile drop, and compression tests. Three types of the scaffolds (unmodified PLGA, PLGA/coll, and PLGA/HAp) were implanted into the defects created in New Zealand rabbit femoral trochlears; empty defect acted as control. Samples were extracted after 1, 4, 12, and 26 weeks from the implantation, evaluated using micro-computed tomography (µCT), and stained by Masson-Goldner and hematoxylin-eosin. The results showed that the proposed method is suitable for fabrication of highly porous PLGA scaffolds. Effective deposition of both coll and HAp was confirmed on all surfaces of the pores through the entire scaffold volume. In the in vivo model, PLGA and PLGA/HAp scaffolds enhanced tissue ingrowth as shown by histological and morphometric analyses. Bone formation was the highest for PLGA/HAp scaffolds as evidenced by µCT. Neo-tissue formation in the defect site was well correlated with degradation kinetics of the scaffold material. Interestingly, around PLGA/coll extensive inflammation and inhibited tissue healing were detected, presumably due to immunological response of the host towards collagen of bovine origin. To summarize, PLGA scaffolds modified with HAp are the most promising materials for bone tissue regeneration.


Assuntos
Osteocondrose/cirurgia , Poliglactina 910/química , Alicerces Teciduais/química , Animais , Regeneração Óssea , Colágeno/química , Hidroxiapatitas/química , Porosidade , Coelhos , Alicerces Teciduais/efeitos adversos
14.
Pharmaceutics ; 12(9)2020 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-32957509

RESUMO

The selection of dressing is crucial for the wound healing process. Traditional dressings protect against contamination and mechanical damage of an injured tissue. Alternatives for standard dressings are regenerating systems containing a polymer with an incorporated active compound. The aim of this research was to obtain a biodegradable wound dressing releasing propolis in a controlled manner throughout the healing process. Dressings were obtained by electrospinning a poly(lactide-co-glycolide) copolymer (PLGA) and propolis solution. The experiment consisted of in vitro drug release studies and in vivo macroscopic treatment evaluation. In in vitro studies released active compounds, the morphology of nonwovens, chemical composition changes of polymeric material during degradation process, weight loss and water absorption were determined. For in vivo research, four domestic pigs, were used. The 21-day experiment consisted of observation of healing third-degree burn wounds supplied with PLGA 85/15 nonwovens without active compound, with 5 wt % and 10 wt % of propolis, and wounds rinsed with NaCl. The in vitro experiment showed that controlling the molar ratio of lactidyl to glycolidyl units in the PLGA copolymer gives the opportunity to change the release profile of propolis from the nonwoven. The in vivo research showed that PLGA nonwovens with propolis may be a promising dressing material in the treatment of severe burn wounds.

15.
Materials (Basel) ; 13(12)2020 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-32575529

RESUMO

The present study aimed to develop and prepare new polymer/herbicide formulations for their potential application in environment-friendly, controlled release systems of agrochemicals. Selected biodegradable polymers, including L-Lactide/Glycolide/PEG/Terpolymer (PLAGA-PEG-PLAGA) as well as oligosaccharide-based polymers and their blend with terpolymer, were used to prepare microspheres loaded with two soil-applied herbicides. The degradation process of the obtained polymeric microspheres was evaluated based on (1) their weight loss and surface erosion and (2) the release rate of loaded metazachlor and pendimethalin. The herbicidal effectiveness of the herbicides released to the soil from microspheres was evaluated using the European Weed Research Council (EWRC) rating scale. Moreover, the ecotoxicological effect of herbicide-loaded microspheres buried in soil on the marine bacterial species A. fischeri was assessed. It was found that the gradual degradation rate of microparticles led to the prolonged release of both herbicides that lasted for a few months, i.e., for the entire crop season, which is crucial in terms of agrochemical and environmental protection. Maltodextrin- and dextrin-based microspheres showed higher susceptibility to degradation than terpolymer-based microspheres. The microencapsulation of herbicides protected them from decomposition and excessive leaching into soil and maintained their activity for a longer period than that for non-immobilized herbicides. The ecotoxicological assessment on A. fischeri demonstrated that the proposed microsphere-encapsulated herbicides were less toxic than non-immobilized herbicides.

16.
Materials (Basel) ; 13(4)2020 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-32059530

RESUMO

The presented work aimed to test influence of poly(L-lactide-co-glycolide)-block-poly (ethylene oxide) copolymer modification by blending with grafted dextrin or maltodextrin on the course of degradation in soil and the usefulness of such material as a matrix in the controlled release of herbicides. The modification should be to obtain homogenous blends with better susceptibility to enzymatic degradation. Among all tested blends, which were proposed as a carrier for potential use in the controlled release of plant protection agents, PLGA-block-PEG copolymer blended with grafted dextrin yielded very promising results for their future applications, and what is very importantly proposed formulations provide herbicides in unchanged form into soil within few months of release. The modification PLAGA/PEG copolymer by blending with modificated dextrins affects the improvement of the release profile. The weekly release rates for both selected herbicides (metazachlor and pendimethalin) were constant for a period of 12 weeks. Enzymatic degradation of modified dextrin combined with leaching of the degradation products into medium caused significant erosion of the polymer matrix, thereby leading to acceleration of water diffusion into the polymer matrix and allowing for easier leaching of herbicides outside the matrix.

17.
Polymers (Basel) ; 12(1)2020 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-31952266

RESUMO

The paper presents the course of synthesis and properties of a series of block copolymers intended for biomedical applications, mainly as a material for forming scaffolds for tissue engineering. These materials were obtained in the polymerization of l-lactide and copolymerization of l-lactide with glycolide carried out using a number of macroinitiators previously obtained in the reaction of polytransesterification of succinic diester, citric triester and 1,4-butanediol. NMR, FTIR and DSC were used to characterize the materials obtained; wettability and surface free energy were assessed too. Moreover, biological tests, i.e., viability and metabolic activity of MG-63 osteoblast-like cells in contact with synthesized polymers were performed. Properties of obtained block copolymers were controlled by the composition of the polymerization mixture and by the composition of the macroinitiator. The copolymers contained active side hydroxyl groups derived from citrate units present in the polymer chain. During the polymerization of L-lactide in the presence of polyesters with butylene citrate units in the chain, obtained products of the reaction held a fraction of highly branched copolymers with ultrahigh molecular weight. The reason for this observed phenomenon was strong intermolecular transesterification directed to lactidyl side chains, formed as a result of chain growth on hydroxyl groups related to the quaternary carbons of the citrate units. Based on the physicochemical properties and results of biological tests it was found that the most promising materials for scaffolds formation were poly(l-lactide-co-glycolide)-block-poly(butylene succinate-co-butylene citrate)s, especially those copolymers containing more than 60 mol % of lactidyl units.

18.
Mater Sci Eng C Mater Biol Appl ; 97: 12-22, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30678897

RESUMO

The main objective of this study was to enhance the biological performance of resorbable polymeric scaffolds for bone tissue engineering. Specifically, we focused on both microstructure and surface modification of the scaffolds to augment adhesion, proliferation and osteogenic differentiation of human mesenchymal stem cells (hMSC). Moreover, a new cell seeding method assuring 90% seeding efficiency on the scaffolds was developed. Poly(l­lactide­co­glycolide) (PLGA) scaffolds with monomodal and bimodal pore distribution were produced by solvent casting/phase separation followed by porogen leaching and modified with artificial extracellular matrices (aECM) consisting of collagen type I and high sulphated hyaluronan (sHya). The application of two porogens resulted in bimodal pore distribution within the PLGA scaffolds as shown by scanning electron microscopy and microcomputer tomography. Two types of pores with diameters 400-600 µm and 2-20 µm were obtained. The scaffolds were successfully coated with a homogenous layer of aECM as shown by Sirius red and toluidine blue staining. In vitro study showed that presence of bimodal pore distribution in combination with collagen/sHya did not significantly influence hMSC proliferation and early osteogenic differentiation compared to scaffolds with monomodal pore distribution. However, it enhanced mineralization as well as the expression of Runt-related transcription factor 2, osteopontin and bone sialoprotein II. As a result PLGA scaffolds with bimodal pore distribution modified with collagen/sHya can be considered as prospective material promoting bone regeneration.


Assuntos
Diferenciação Celular/fisiologia , Células-Tronco Mesenquimais/citologia , Alicerces Teciduais , Adulto , Fosfatos de Cálcio/metabolismo , Adesão Celular , Proliferação de Células , Colágeno Tipo I/química , Subunidade alfa 1 de Fator de Ligação ao Core/metabolismo , Matriz Extracelular , Humanos , Ácido Hialurônico/química , Sialoproteína de Ligação à Integrina/metabolismo , Masculino , Células-Tronco Mesenquimais/fisiologia , Microscopia Eletrônica de Varredura , Osteogênese , Copolímero de Ácido Poliláctico e Ácido Poliglicólico/química , Engenharia Tecidual/métodos
19.
Eur J Pharm Biopharm ; 132: 41-49, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30179737

RESUMO

Despite extensive development of bioresorbable drug-eluting vascular scaffolds it is still challenging to achieve controlled drug delivery. The lack of capacity for adjusting the drug dose and inadequate release behavior are one of the main reasons of the side effects. However, so far, mainly biodegradable drug-eluting coatings of metallic stents have been studied in regard to explain drug release mechanisms. The objective of this study was to develop degradable polymer coatings applicable to bioresorbable polymer-based scaffolds. Moreover, a detailed analysis of sirolimus release and scaffold degradation has been conducted. Coating layers of the same composition were applied by the same method on the surface of two different kinds of scaffolds in order to explain the effect of scaffold structure on release process. The developed coatings showed controlled release of antiproliferative agent with elimination of burst effect. However, differences in drug release profile from two kinds of scaffolds were observed. Scaffold composed of polymer with higher lactide content showed slower and bi-phasic, erosion-controlled release of sirolimus. On the contrary, sirolimus release from scaffold composed of polymer with lower content of lactide was mainly controlled by diffusion. These results demonstrate that characteristics of scaffold is another crucial factor that must be considered in further development of bioresorbable vascular scaffolds (BRS) with controlled release of antiproliferative agent.


Assuntos
Implantes Absorvíveis , Materiais Revestidos Biocompatíveis/química , Polímeros/química , Sirolimo/administração & dosagem , Liberação Controlada de Fármacos , Stents Farmacológicos , Sirolimo/química , Alicerces Teciduais
20.
Acta Bioeng Biomech ; 20(2): 35-45, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30220727

RESUMO

their surface properties. A main challenge in this area is the development of processing routes enabling for a simple but efficient surface design of complex shaped geometries. Against this background, this work aimed at the implementation of self-assembly principles for surface functionalization of 3D-printed poly(lactic-co-glycolic acid) (PLGA)-based constructs with macro- and microporous geometries via precision extruding deposition. METHODS: Three-component melts from PLGA, CaCO3 and amphiphilic polymers (poly(2-oxazoline) block copolymer) were printed and their bulk and surface properties were studied. RESULTS: Melts with up to 30 mass % of CaCO3 could be successfully printed with homogeneously distributed mineral particles. PLGA degradation during the printing process was temperature and time dependent: the molecular weight reached 10 to 15% of the initial values after ca. 120 min of heat exposure. Filament surfaces from melts containing CaCO3 show an increasing microroughness along with increasing CaCO3 content. Surface roughness and amphiphilic polymer content improve scaffold wettability with both factors showing synergistic effects. The CaCO3 content of the melts affected the inner filament structure during in vitro degradation in PBS, resulting in a homogeneous mineral particle-associated microporosity for mineral contents of 20 mass % and above. CONCLUSIONS: These results provide novel insights into the behavior of three-component melts from PLGA, CaCO3 and amphiphilic polymers during precision extruding deposition and show for the first time that self-assembly processes can be used to tailor scaffolds surface properties under such processing conditions.


Assuntos
Impressão Tridimensional , Engenharia Tecidual/métodos , Alicerces Teciduais/química , Soluções Tampão , Peso Molecular , Copolímero de Ácido Poliláctico e Ácido Poliglicólico/química , Água/química , Molhabilidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA