Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-34250422

RESUMO

Tumor tissue from metastatic castration-resistant prostate cancer (mCRPC) harbors frequent copy number variations (CNVs) in the PTEN-PI3K-AKT pathway. However, identifying CNVs in plasma cell-free DNA (cfDNA) has proven to be challenging. With emerging data supporting Akt inhibition in PTEN-deficient mCRPC, we profiled PTEN-PI3K-AKT pathway aberrations in patients with mCRPC using a novel cfDNA assay optimized for CNV detection. METHODS: A next-generation sequencing-based cfDNA assay was used to profile 231 patients with mCRPC from two independent cohorts (Australian, n = 78; United States, n = 153). PTEN-PI3K-AKT pathway genomic aberrations were correlated with clinical outcomes, including progression-free survival and overall survival (OS). RESULTS: PTEN loss and PIK3CA gain were detected in 37% (85 of 231) and 17% (39 of 231) of patients, respectively. Poorer outcomes were observed in patients with PTEN-PI3K-AKT pathway aberrations, including those with dual PTEN loss and PIK3CA gain (hazard ratio 2.3, 95% CI 1.2 to 4.4). Cumulative CNV burden in the PTEN-PI3K-AKT and androgen receptor (AR) pathways was associated with significantly worse clinical outcomes (0 v 1 v ≥ 2 CNVs in Australian cohort: median OS 33.5 v 17.2 v 9.7 months, P < .001; 0 v 1 v ≥ 2 CNVs in US cohort: median OS 35.5 v 14.3 v 9.2 months, P < .001). Notably, 21% (31 of 146) of PTEN-neutral patients harbored alternative PTEN-PI3K-AKT pathway aberrations. CONCLUSION: PTEN-PI3K-AKT pathway CNVs were readily detected using our cfDNA assay, with the prevalence of PTEN loss comparable with tissue-based studies. Additional PTEN-PI3K-AKT pathway aberrations were found in one fifth of PTEN-neutral cases. Concurrent CNVs in the PTEN-PI3K-AKT and AR pathways portended poor survival, and identifying this high-risk patient subset for dual AR/Akt inhibition may optimize precision treatment with Akt inhibitors in mCRPC.


Assuntos
Ácidos Nucleicos Livres/sangue , PTEN Fosfo-Hidrolase/genética , Fosfatidilinositol 3-Quinases/genética , Neoplasias de Próstata Resistentes à Castração/sangue , Neoplasias de Próstata Resistentes à Castração/genética , Proteínas Proto-Oncogênicas c-akt/genética , Transdução de Sinais/genética , Impressões Digitais de DNA , Humanos , Masculino , Metástase Neoplásica , Fosfatidilinositol 3-Quinase , Estudos Prospectivos , Neoplasias de Próstata Resistentes à Castração/patologia
2.
Transl Androl Urol ; 10(4): 1688-1699, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33968657

RESUMO

BACKGROUND: As potent systemic therapies transition earlier in the prostate cancer disease course, molecular biomarkers are needed to guide optimal treatment selection for metastatic hormone-sensitive prostate cancer (mHSPC). The value of whole blood RNA to detect candidate biomarkers in mHSPC remains largely undefined. METHODS: In this cohort study, we used a previously optimised whole blood reverse transcription polymerase chain reaction assay to assess the prognostic utility [measured by seven-month undetectable prostate-specific antigen (PSA) and time to castration-resistance (TTCR)] of eight prostate cancer-associated gene transcripts in 43 mHSPC patients. Transcripts with statistically significant associations (P<0.05) were further investigated in a metastatic castration-resistant prostate cancer (mCRPC) cohort (n=119) receiving contemporary systemic therapy, exploring associations with PSA >50% response (PSA50), progression-free survival (PFS) and overall survival (OS). Clinical outcomes were prospectively collected in a protected digital database. Kaplan-Meier estimates and multivariable Cox proportional-hazards models assessed associations between gene transcripts and clinical outcomes (mHSPC covariates: disease volume, docetaxel use and haemoglobin level; mCRPC covariates: prior exposure to chemotherapy or ARPIs, haemoglobin, performance status and presence of visceral disease). Follow-up was performed monthly during ARPI treatment, three-weekly during taxane chemotherapy, and three-monthly during androgen deprivation therapy (ADT) monotherapy. Serial PSA measurements were performed before each follow-up visit and repeat imaging was at the discretion of the investigator. RESULTS: Detection of circulating Grainyhead-like 2 (GRHL2) transcript was associated with poor outcomes in mHSPC and mCRPC patients. Detectable GRHL2 expression in mHSPC was associated with a lower rate of seven-month undetectable PSA levels (25% vs. 65%, P=0.059), and independently associated with shorter TTCR (HR 7.3, 95% CI: 1.5-36, P=0.01). In the mCRPC cohort, GRHL2 expression predicted significantly lower PSA50 response rates (46% vs. 69%, P=0.01), and was independently associated with shorter PFS (HR 3.1, 95% CI: 1.8-5.2, P<0.001) and OS (HR 2.9, 95% CI: 1.6-5.1, P<0.001). Associations were most apparent in patients receiving ARPIs. CONCLUSIONS: Detectable circulating GRHL2 was a negative prognostic biomarker in our mHSPC and mCRPC cohorts. These data support further investigation of GRHL2 as a candidate prognostic biomarker in metastatic prostate cancer, in addition to expanding efforts to better understand a putative role in therapeutic resistance to AR targeted therapies.

3.
Eur Urol Focus ; 7(1): 63-70, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-31103601

RESUMO

BACKGROUND: The treatment paradigm for metastatic castration-resistant prostate cancer (mCRPC) has evolved significantly in recent years. Identifying predictive and/or prognostic biomarkers in the context of this rapidly expanding therapeutic armamentarium remains a pressing and unmet clinical need. OBJECTIVE: To develop a prognostic whole-blood gene signature for mCRPC patients. DESIGN, SETTING, AND PARTICIPANTS: As part of an ongoing prospective, multicentre biomarker research study (Australian Prostate Biomarker Alliance), we enrolled 115 mCRPC patients commencing chemotherapy (n = 34) or androgen receptor (AR) pathway inhibitors therapy (n = 81) and obtained pretreatment whole-blood samples in PAXgene RNA tubes. Gene expression was assessed using reverse transcription-polymerase chain reaction. OUTCOME MEASUREMENTS AND STATISTICAL ANALYSIS: Gene transcripts correlating with overall survival (OS) at p < 0.10 in univariate Cox regression models were incorporated into a multigene signature. Kaplan-Meier survival estimates and multivariate analyses were used to assess association with clinical outcomes. Prognostic strength of the signature was estimated using a concordance probability estimate (CPE). RESULTS AND LIMITATIONS: Based on univariate analysis for OS, the following genes were incorporated into a multigene signature: AR splice variant 7 (AR-V7), and three androgen-regulated genes: GRHL2, HOXB13, and FOXA1. The number of positive transcripts clearly stratified survival outcomes (median OS: not reached vs 24.8 mo vs 16.2 mo for 0, 1, and ≥2 transcripts, respectively; p = 0.0052). Notably, this multigene signature retained prognostic significance on multivariable analysis (hazard ratio, 2.1; 95% confidence interval, 1.1-4.0; p = 0.019). Moreover, CPE for this model was 0.78, indicating strong discriminative capacity. Limitations include short follow-up time. CONCLUSIONS: Our data demonstrate the prognostic utility of a novel whole-blood AR-based signature in mCRPC patients commencing contemporary systemic therapies. Our pragmatic assay requires minimal processing, can be performed in most hospital laboratories, and could represent a key prognostic tool for risk stratification in mCRPC. PATIENT SUMMARY: We found that expression of certain genes associated with the androgen receptor could help determine how long men with advanced prostate cancer survive after starting modern drug therapies.


Assuntos
Tratamento Farmacológico/métodos , Neoplasias de Próstata Resistentes à Castração/tratamento farmacológico , Receptores Androgênicos/uso terapêutico , Idoso , Idoso de 80 Anos ou mais , Austrália , Biomarcadores/sangue , Proteínas de Ligação a DNA , Expressão Gênica , Humanos , Masculino , Pessoa de Meia-Idade , Prognóstico , Estudos Prospectivos , Neoplasias de Próstata Resistentes à Castração/genética , Neoplasias de Próstata Resistentes à Castração/mortalidade , Receptores Androgênicos/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Fatores de Transcrição
4.
Eur Urol ; 78(2): 173-180, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32487321

RESUMO

BACKGROUND: The androgen receptor (AR) remains a critical driver in metastatic castration-resistant prostate cancer (mCRPC). Profiling AR aberrations in both circulating DNA and RNA may identify key predictive and/or prognostic biomarkers in the context of contemporary systemic therapy. OBJECTIVE: To profile AR aberrations in circulating nucleic acids and correlate with clinical outcomes. DESIGN, SETTING, AND PARTICIPANTS: We prospectively enrolled 67 mCRPC patients commencing AR pathway inhibitors (ARPIs; n = 41) or taxane chemotherapy (n = 26). Using a first-in-class next-generation sequencing-based assay, we performed integrated cell-free DNA (cfDNA) and cell-free RNA (cfRNA) profiling from a single 10 ml blood tube. OUTCOME MEASUREMENTS AND STATISTICAL ANALYSIS: Kaplan-Meier survival estimates and multivariable Cox regression analyses were used to assess associations between clinical outcomes and the following AR aberrations: copy number variation, splice variants (AR-V7 and AR-V9) and somatic mutations. RESULTS AND LIMITATIONS: Cell-free DNA and cfRNA were successfully sequenced in 67 (100%) and 59 (88%) patients, respectively. Thirty-six (54%) patients had one or more AR aberrations. AR gain and cumulative number of AR aberrations were independently associated with clinical/radiographic progression-free survival (PFS; hazard ratio [HR] 3.2, p = 0.01 and HR 3.0 for 0 vs ≥2, p = 0.04) and overall survival (HR 2.8, p = 0.04 and HR 2.9 for 0 vs ≥2, p = 0.03). Notably, concurrent AR gain and AR splice variant expression (AR gain/AR-V+) was associated with shorter prostate-specific antigen PFS on both ARPIs (HR 6.7, p = 0.009) and chemotherapy (HR 3.9, p = 0.04). Importantly, key findings were validated in an independent cohort of mCRPC patients (n = 40), including shorter OS in AR gain/AR-V+ disease (HR 3.3, p = 0.02). Limitations include sample size and follow-up period. CONCLUSIONS: We demonstrate the utility of a novel, multianalyte liquid biopsy assay capable of simultaneously detecting AR alterations in cfDNA and cfRNA. Concurrent profiling of cfDNA and cfRNA may provide vital insights into disease biology and resistance mechanisms in mCRPC. PATIENT SUMMARY: In this study of men with advanced prostate cancer, DNA and RNA abnormalities in the androgen receptor detected in blood were associated with poor outcomes on available drug treatments. This information could be used to better guide treatment of advanced prostate cancer.


Assuntos
Ácidos Nucleicos Livres/sangue , Neoplasias da Próstata/sangue , Neoplasias da Próstata/patologia , Receptores Androgênicos/genética , Idoso , Idoso de 80 Anos ou mais , Perfilação da Expressão Gênica , Humanos , Biópsia Líquida , Masculino , Pessoa de Meia-Idade , Metástase Neoplásica , Estudos Prospectivos , Neoplasias da Próstata/genética
5.
Eur Urol ; 73(6): 818-821, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29398263

RESUMO

In 2014, a landmark study was published demonstrating that the expression of androgen receptor splice variant (AR-V) 7 was a negative predictive biomarker for response to abiraterone acetate and enzalutamide in metastatic castration-resistant prostate cancer (mCRPC) patients. However, these results were not supported by the recently reported ARMOR3-SV phase III clinical trial, which employed an identical circulating tumour cell assay to assess AR-V7 expression. Therefore, the predictive utility of AR-V7 expression in mCRPC remains uncertain, as does any potential association between other AR-Vs and treatment response. To further investigate, we designed a highly sensitive and specific whole blood assay for detecting AR-V7 and AR-V9. We then examined for a correlation between baseline AR-V7/V9 status and treatment outcome in 37 mCRPC patients commencing abiraterone or enzalutamide. Of the patients, 24% (9/37) were AR-V-positive. Notably, prostate-specific antigen (PSA) response rates did not significantly differ between AR-V-positive (6/9) and AR-V-negative (18/28) patients (66% vs 64%, p=0.9). Likewise, median PSA progression-free survival was not significantly different between AR-V-positive and AR-V-negative patients (9.2 mo vs not reached; p=0.9). These data, which support the findings of the pivotal ARMOR3-SV clinical trial, suggest that baseline AR-V expression does not predict outcomes in mCRPC patients receiving abiraterone or enzalutamide. PATIENT SUMMARY: Detection of androgen receptor splice variants (AR-Vs) in circulating tumour cells of advanced prostate cancer patients has been linked to resistance to abiraterone and enzalutamide. We designed a blood test to detect AR-Vs that can be performed more routinely than tests involving circulating tumour cells and found that patients with AR-Vs still benefit from these effective treatments.


Assuntos
Acetato de Abiraterona/uso terapêutico , Antineoplásicos/uso terapêutico , Biomarcadores Tumorais/sangue , Feniltioidantoína/análogos & derivados , Neoplasias de Próstata Resistentes à Castração/sangue , Neoplasias de Próstata Resistentes à Castração/tratamento farmacológico , Receptores Androgênicos/sangue , Benzamidas , Humanos , Masculino , Metástase Neoplásica , Nitrilas , Feniltioidantoína/uso terapêutico , Valor Preditivo dos Testes , Intervalo Livre de Progressão , Antígeno Prostático Específico/sangue , Neoplasias de Próstata Resistentes à Castração/patologia , Isoformas de Proteínas/sangue
6.
FASEB J ; 32(6): 3361-3370, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29401621

RESUMO

White adipose tissue inflammation is linked with increased aromatase gene expression and estrogen production, a major risk factor for breast cancer in obese postmenopausal women. TNF-α, a proinflammatory cytokine, is a key driver of aromatase promoter I.4-mediated expression in adipose tissue. In this study, we have shown that IL-10, an anti-inflammatory cytokine, suppressed both TNF-α-stimulated human aromatase reporter-luciferase (hARO-Luc) expression in mouse bone marrow mesenchymal stromal cells and aromatase gene expression in human breast adipose stromal cells (ASCs). IL-10 blocked TNF-α-stimulated ERK1/2 activation in ASCs, suggesting an inhibitory effect through the MAPK signaling pathway. The links among obesity, IL-10, and aromatase were confirmed in ovariectomized (OVX) hARO-Luc mice, where increased adiposity was associated with upregulation of aromatase reporter activity and reduced IL-10 level in the mammary fat pad. OVX mice also exhibited changes in gut microbiota, similar to that in obese women, indicating altered immune function. In summary, our results suggest that increased adiposity, induced by the lack of ovarian hormones, results in enhanced expression of aromatase in mammary adipose tissue, mediated by reduction in local IL-10. These findings may bring new insights into the mechanisms involved in the development of postmenopausal breast cancer, as well as novel approaches for prevention.-Martínez-Chacón, G., Brown, K. A., Docanto, M. M., Kumar, H., Salminen, S., Saarinen, N., Mäkelä, S. IL-10 suppresses TNF-α-induced expression of human aromatase gene in mammary adipose tissue.


Assuntos
Tecido Adiposo/enzimologia , Aromatase/biossíntese , Mama/enzimologia , Regulação Enzimológica da Expressão Gênica , Interleucina-10/metabolismo , Sistema de Sinalização das MAP Quinases , Fator de Necrose Tumoral alfa/metabolismo , Animais , Feminino , Humanos , Glândulas Mamárias Animais/enzimologia , Camundongos , Camundongos Transgênicos , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/metabolismo
7.
J Steroid Biochem Mol Biol ; 170: 49-53, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-27423512

RESUMO

Des-acyl ghrelin is the unacylated form of the well-characterized appetite-stimulating hormone ghrelin. It affects a number of physiological processes, including increasing adipose lipid accumulation and inhibiting adipose tissue inflammation. Breast adipose tissue inflammation in obesity is associated with an increase in the expression of the estrogen biosynthetic enzyme, aromatase, and is hypothesized to create a hormonal milieu conducive to tumor growth. We previously reported that des-acyl ghrelin inhibits the expression and activity of aromatase in isolated human adipose stromal cells (ASCs), the main site of aromatase expression in the adipose tissue. The current study aimed to examine the effect of des-acyl ghrelin on the capacity of mouse macrophages (RAW264.7 cells) and human adipose tissue macrophages (ATMs) to stimulate aromatase expression in primary human breast ASCs. RAW264.7 cells were treated with 0, 10 and 100pM des-acyl ghrelin following activation with phorbol 12-myristate 13-acetate, and cells and conditioned media were collected after 6 and 24h. The effect of des-acyl ghrelin on macrophage polarization was examined by assessing mRNA expression of pro-inflammatory M1-specific marker Cd11c and anti-inflammatory M2-specific marker Cd206, as well as expression of Tnf and Ptgs2, known mediators of the macrophage-dependent stimulation of aromatase. TNF protein in conditioned media was assessed by ELISA. The effect of RAW264.7 and ATM-conditioned media on aromatase expression in ASCs was assessed after 6h. Results demonstrate des-acyl ghrelin significantly increases the expression of Cd206 and suppresses the expression of Cd11c, Tnf and Ptgs2 in activated RAW264.7 cells. Treatment of RAW264.7 and ATMs with des-acyl ghrelin also significantly reduces the capacity of these cells to stimulate aromatase transcript expression in human breast ASCs. Overall, these findings suggest that in addition to direct effects on aromatase in ASCs, des-acyl ghrelin also has the capacity to inhibit the macrophage-dependent induction of aromatase, and provides a novel mechanism for potential effects of des-acyl ghrelin to break the linkage between obesity and breast cancer.


Assuntos
Aromatase/genética , Mama/efeitos dos fármacos , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Grelina/farmacologia , Macrófagos/efeitos dos fármacos , Animais , Aromatase/metabolismo , Mama/citologia , Mama/metabolismo , Células Cultivadas , Relação Dose-Resposta a Droga , Feminino , Perfilação da Expressão Gênica , Humanos , Macrófagos/metabolismo , Camundongos , Células RAW 264.7 , Relação Estrutura-Atividade
8.
J Interferon Cytokine Res ; 35(8): 600-5, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25839190

RESUMO

Obesity is associated with chronic low-grade inflammation. This occurs largely as a result of the infiltration of immune cells within the obese adipose, which produce a number of inflammatory factors, including interleukin-6 (IL-6), IL-1ß, tumor necrosis factor-α (TNFα), and prostaglandin E(2) (PGE(2)). These factors have previously been shown to affect insulin-mediated glucose uptake in differentiated adipocytes. However, the insulin-independent effect of inflammation on adipocyte precursors, the adipose stromal cells, has not been explored. This study therefore aimed to examine the effect of obesity-associated inflammatory factors on the expression of insulin-independent glucose transporters (GLUT1 and GLUT3) and on the uptake of glucose within adipose stromal cells. Primary human subcutaneous adipose stromal cells were isolated from abdominoplasty, and the effect of inflammatory cytokines (IL-6, IL-1ß, and TNFα) and PGE(2) on GLUT mRNA expression and glucose transport was assessed using real-time polymerase chain reaction and radiolabeled deoxyglucose uptake assays, respectively. Results demonstrate that all four inflammatory mediators caused a dose-dependent increase in GLUT1 mRNA expression and glucose uptake. GLUT3 mRNA expression was also upregulated by IL-6 (0.5 ng/mL), TNFα (0.1 and 10 ng/mL), and PGE(2) (0.1 µM). Overall, these results demonstrate that obesity-associated inflammation increases insulin-independent glucose transporter expression and glucose uptake in undifferentiated adipose stromal cells.


Assuntos
Citocinas/metabolismo , Dinoprostona/metabolismo , Proteínas Facilitadoras de Transporte de Glucose/genética , Proteínas Facilitadoras de Transporte de Glucose/metabolismo , Glucose/metabolismo , Obesidade/genética , Obesidade/metabolismo , Células Estromais/metabolismo , Tecido Adiposo/metabolismo , Células Cultivadas , Citocinas/farmacologia , Dinoprostona/farmacologia , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , RNA Mensageiro/genética
9.
Cancer Res ; 75(4): 645-55, 2015 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-25634217

RESUMO

Obesity is a risk factor for postmenopausal breast cancer and the majority of these cancers are estrogen dependent. Aromatase converts androgens into estrogens and its increased expression in breast adipose stromal cells (ASC) is a major driver of estrogen receptor-positive breast cancer. In particular, obesity-associated and tumor-derived factors, such as prostaglandin E2 (PGE2), have been shown to drive the expression of aromatase by stimulating the activity of the proximal promoter II (PII). The tumor-suppressor p53 is a key regulator of cell-cycle arrest and apoptosis and is frequently mutated in breast cancer. Mutations in p53 are rare in tumor-associated ASCs. Therefore, it was hypothesized that p53 is regulated by PGE2 and involved in the PGE2-mediated regulation of aromatase. Results demonstrate that PGE2 causes a significant decrease in p53 transcript and nuclear protein expression, as well as phosphorylation at Ser15 in primary human breast ASCs. Stabilization of p53 with RITA leads to a significant decrease in the PGE2-stimulated aromatase mRNA expression and activity, and PII activity. Interaction of p53 with PII was demonstrated and this interaction is decreased in the presence of PGE2. Moreover, mutation of the identified p53 response element leads to an increase in the basal activity of the promoter. Immunofluorescence on clinical samples demonstrates that p53 is decreased in tumor-associated ASCs compared with ASCs from normal breast tissue, and that there is a positive association between perinuclear (inactive) p53 and aromatase expression in these cells. Furthermore, aromatase expression is increased in breast ASCs from Li-Fraumeni patients (germline TP53 mutations) compared with non-Li-Fraumeni breast tissue. Overall, our results demonstrate that p53 is a negative regulator of aromatase in the breast and its inhibition by PGE2 provides a novel mechanism for aromatase regulation in obesity and breast cancer.


Assuntos
Aromatase/genética , Neoplasias da Mama/genética , Dinoprostona/metabolismo , Obesidade/genética , Proteína Supressora de Tumor p53/biossíntese , Células 3T3-L1 , Tecido Adiposo/citologia , Animais , Aromatase/metabolismo , Mama/citologia , Mama/metabolismo , Neoplasias da Mama/patologia , Dinoprostona/genética , Estrogênios/metabolismo , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Camundongos , Obesidade/patologia , Regiões Promotoras Genéticas , Células Estromais/metabolismo , Células Estromais/patologia
10.
Breast Cancer Res Treat ; 147(1): 193-201, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25056185

RESUMO

Aromatase converts androgens into estrogens and its expression within adipose stromal cells (ASCs) is believed to be the major driver of estrogen-dependent cancers in older women. Ghrelin is a gut-hormone that is involved in the regulation of appetite and known to bind to and activate the cognate ghrelin receptor, GHSR1a. The unacylated form of ghrelin, des-acyl ghrelin, binds weakly to GHSR1a but has been shown to play an important role in regulating a number of physiological processes. The aim of this study was to determine the effect of ghrelin and des-acyl ghrelin on aromatase in primary human ASCs. Primary human ASCs were isolated from adipose tissue of women undergoing cosmetic surgery. Real-time PCR and tritiated water-release assays were performed to examine the effect of treatment on aromatase transcript expression and aromatase activity, respectively. Treatments included ghrelin, des-acyl ghrelin, obestatin, and capromorelin (GHSR1a agonist). GHSR1a protein expression was assessed by Western blot and effects of treatment on Ca(2+) and cAMP second messenger systems were examined using the Flexstation assay and the Lance Ultra cAMP kit, respectively. Results demonstrate that pM concentrations of ghrelin and des-acyl ghrelin inhibit aromatase transcript expression and activity in ASCs under basal conditions and in PGE2-stimulated cells. Moreover, the effects of ghrelin and des-acyl ghrelin are mediated via effects on aromatase promoter PII-specific transcripts. Neither the GHSR1a-specific agonist capromorelin nor obestatin had any effect on aromatase transcript expression or activity. Moreover, GHSR1a protein was undetectable by Western blot and neither ghrelin nor capromorelin elicited a calcium response in ASCs. Finally, ghrelin caused a significant decrease in basal and forskolin-stimulated cAMP in ASC. These findings suggest that ghrelin acts at alternate receptors in ASCs by decreasing intracellular cAMP levels. Ghrelin mimetics may be useful in the treatment of estrogen-dependent breast cancer.


Assuntos
Tecido Adiposo/enzimologia , Aromatase/química , Mama/enzimologia , AMP Cíclico/metabolismo , Grelina/farmacologia , Células Estromais/enzimologia , Tecido Adiposo/citologia , Tecido Adiposo/efeitos dos fármacos , Aromatase/genética , Aromatase/metabolismo , Western Blotting , Mama/citologia , Mama/efeitos dos fármacos , Cálcio/metabolismo , Células Cultivadas , Feminino , Humanos , Piperidinas/farmacologia , Pirazóis/farmacologia , RNA Mensageiro/genética , Reação em Cadeia da Polimerase em Tempo Real , Receptores de Grelina/agonistas , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Células Estromais/citologia , Células Estromais/efeitos dos fármacos
11.
Breast Cancer Res ; 15(2): R30, 2013 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-23566437

RESUMO

INTRODUCTION: The majority of postmenopausal breast cancers are estrogen-dependent. Tumor-derived factors, such as prostaglandin E2 (PGE2), stimulate CREB1 binding to cAMP response elements (CREs) on aromatase promoter II (PII), leading to the increased expression of aromatase and biosynthesis of estrogens within human breast adipose stromal cells (ASCs). Hypoxia inducible factor-1α (HIF-1α), a key mediator of cellular adaptation to low oxygen levels, is emerging as a novel prognostic marker in breast cancer. We have identified the presence of a consensus HIF-1α binding motif overlapping with the proximal CRE of aromatase PII. However, the regulation of aromatase expression by HIF-1α in breast cancer has not been characterized. This study aimed to characterize the role of HIF-1α in the activation of aromatase PII. METHODS: HIF-1α expression and localization were examined in human breast ASCs using quantitative PCR (QPCR), Western blotting, immunofluorescence and high content screening. QPCR and tritiated water-release assays were performed to assess the effect of HIF-1α on aromatase expression and activity. Reporter assays and chromatin immunoprecipitation (ChIP) were performed to assess the effect of HIF-1α on PII activity and binding. Treatments included PGE2 or DMOG ((dimethyloxalglycine), HIF-1α stabilizer). Double immunohistochemistry for HIF-1α and aromatase was performed on tissues obtained from breast cancer and cancer-free patients. RESULTS: Results indicate that PGE2 increases HIF-1α transcript and protein expression, nuclear localization and binding to aromatase PII in human breast ASCs. Results also demonstrate that HIF-1α significantly increases PII activity, and aromatase transcript expression and activity, in the presence of DMOG and/or PGE2, and that HIF-1α and CREB1 act co-operatively on PII. There is a significant increase in HIF-1α positive ASCs in breast cancer patients compared to cancer-free women, and a positive association between HIF-1α and aromatase expression. CONCLUSIONS: This study is the first to identify HIF-1α as a modulator of PII-driven aromatase expression in human breast tumor-associated stroma and provides a novel mechanism for estrogen regulation in obesity-related, post-menopausal breast cancer. Together with our on-going studies on the role of AMP-activated protein kinase (AMPK) in the regulation of breast aromatase, this work provides another link between disregulated metabolism and breast cancer.


Assuntos
Tecido Adiposo/metabolismo , Aromatase/genética , Neoplasias da Mama/metabolismo , Dinoprostona/farmacologia , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Células Estromais/metabolismo , Tecido Adiposo/efeitos dos fármacos , Tecido Adiposo/patologia , Aromatase/metabolismo , Western Blotting , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/patologia , Carcinoma Ductal de Mama/tratamento farmacológico , Carcinoma Ductal de Mama/metabolismo , Carcinoma Ductal de Mama/patologia , Núcleo Celular/efeitos dos fármacos , Núcleo Celular/metabolismo , Imunoprecipitação da Cromatina , Feminino , Imunofluorescência , Humanos , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Técnicas Imunoenzimáticas , Ocitócicos/farmacologia , RNA Mensageiro/genética , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Células Estromais/efeitos dos fármacos , Células Estromais/patologia , Células Tumorais Cultivadas
12.
Horm Cancer ; 4(4): 233-41, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23584792

RESUMO

The dramatically increased prevalence of breast cancer after menopause is of great concern and is correlated with elevated local levels of estrogens. This is mainly due to an increase in aromatase expression driven by its proximal promoter II (PII). We have previously demonstrated that the CREB co-activator CRTC2 binds directly to PII and stimulates its activity via mechanisms involving LKB1-AMPK in response to prostaglandin E(2) (PGE(2)). There are three members of the CRTC family (CRTC1-3) and this study aimed to characterize the role of other CRTCs in the activation of aromatase PII. The expression and subcellular localization of CRTCs were examined in preadipocytes using qPCR and immunofluorescence. Under basal conditions, CRTC1 expression was the lowest, whereas CRTC3 transcripts were present at higher levels. Basally, CRTC2 and CRTC3 were mainly cytoplasmic and PGE(2) caused their nuclear translocation. Reporter assays and chromatin immunoprecipitation (ChIP) were performed to assess the effect of CRTCs on PII activity and binding. Basal PII activity was significantly increased with all CRTCs. Forskolin (FSK)/phorbol 12-myristate 13-acetate (PMA), to mimic PGE(2), resulted in a further significant increase in PII activity with all CRTCs, with CRTC2 and CRTC3 having greater effects. This was consistent with ChIP data showing an increased binding of CRTCs to PII with FSK/PMA. Moreover, gene silencing of CRTC2 and CRTC3 significantly reduced the FSK/PMA-mediated stimulation of aromatase activity. Interestingly, CRTCs acted cooperatively with CREB1 to increase PII activity, and both CREs were found to be essential for the maximal induction of PII activity by CRTCs. Phosphorylation of CRTC2 at its AMPK target site, Ser 171, dictated its subcellular localization, and the activation of aromatase PII in preadipocytes. In conclusion, this study demonstrates that aromatase regulation in primary human breast preadipocytes involves more than one CRTC.


Assuntos
Adipócitos/enzimologia , Aromatase/genética , Fatores de Transcrição/fisiologia , Células 3T3 , Animais , Aromatase/metabolismo , Células COS , Chlorocebus aethiops , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Dinoprostona/fisiologia , Indução Enzimática , Humanos , Camundongos , Fosforilação , Cultura Primária de Células , Regiões Promotoras Genéticas , Ligação Proteica , Processamento de Proteína Pós-Traducional , Transporte Proteico , Fatores de Transcrição/metabolismo , Transcrição Gênica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA