Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
1.
Life (Basel) ; 14(1)2024 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-38255722

RESUMO

(1) Background: Inherited retinal degenertions are rare conditions which may have a dramatic impact on the daily life of those affected and how they interact with their environment. Coordination of clinical services via an ophthalmic genetics multidisciplinary team (OG-MDT) allows better efficiency of time and resources to reach diagnoses and facilitate patient needs. (2) Methods: This clinical case series was conducted by a retrospective review of patient records for patients enrolled in the Target 5000 programme and managed by the OG-MDT, at the Mater Hospital Dublin, Ireland (n = 865) (3) Results: Herein we describe clinical cases and how the use of the OG-MDT optimizes care for isolated and syndromic IRD pedigrees. (4) Conclusions: this paper demonstrates the benefits of an OG-MDT to patients with IRDs resulting in the holistic resolution of complex and syndromic cases. Furthermore, we demonstrate that this format can be adopted/developed by similar centres around the world, bringing with it the myriad benefits.

2.
J Med Genet ; 61(3): 207-211, 2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38296635

RESUMO

Genomic technologies have transformed clinical genetic testing, underlining the importance of accurate molecular genetic diagnoses. Variant classification, ranging from benign to pathogenic, is fundamental to these tests. However, variant reclassification, the process of reassigning the pathogenicity of variants over time, poses challenges to diagnostic legitimacy. This review explores the medical and scientific literature available on variant reclassification, focusing on its clinical implications.Variant reclassification is driven by accruing evidence from diverse sources, leading to variant reclassification frequency ranging from 3.6% to 58.8%. Recent studies have shown that significant changes can occur when reviewing variant classifications within 1 year after initial classification, illustrating the importance of early, accurate variant assignation for clinical care.Variants of uncertain significance (VUS) are particularly problematic. They lack clear categorisation but have influenced patient treatment despite recommendations against it. Addressing VUS reclassification is essential to enhance the credibility of genetic testing and the clinical impact. Factors affecting reclassification include standardised guidelines, clinical phenotype-genotype correlations through deep phenotyping and ancestry studies, large-scale databases and bioinformatics tools. As genomic databases grow and knowledge advances, reclassification rates are expected to change, reducing discordance in future classifications.Variant reclassification affects patient diagnosis, precision therapy and family screening. The exact patient impact is yet unknown. Understanding influencing factors and adopting standardised guidelines are vital for precise molecular genetic diagnoses, ensuring optimal patient care and minimising clinical risk.


Assuntos
Predisposição Genética para Doença , Variação Genética , Humanos , Testes Genéticos , Estudos de Associação Genética , Genômica
3.
Invest Ophthalmol Vis Sci ; 64(10): 23, 2023 07 03.
Artigo em Inglês | MEDLINE | ID: mdl-37466950

RESUMO

Purpose: Usher syndrome (USH) is a genetically heterogeneous group of autosomal recessive (AR) syndromic inherited retinal degenerations (IRDs) representing 50% of deaf-blindness. All subtypes include retinitis pigmentosa, sensorineural hearing loss, and vestibular abnormalities. Thorough phenotyping may facilitate genetic diagnosis and intervention. Here we report the clinical/genetic features of an Irish USH cohort. Methods: USH patients were selected from the Irish IRD registry (Target 5000). Patients were examined clinically (deep-phenotyping) and genetically using a 254 IRD-associated gene target capture sequencing panel, USH2A exon, and whole genome sequencing. Results: The study identified 145 patients (24.1% USH1 [n = 35], 73.8% USH2 [n = 107], 1.4% USH3 [n = 2], and 0.7% USH4 [n = 1]). A genetic diagnosis was reached in 82.1%, the majority (80.7%) being MYO7A or USH2A genotypes. Mean visual acuity and visual field (VF) were 0.47 ± 0.58 LogMAR and 31.3° ± 32.8°, respectively, at a mean age of 43 years. Legal blindness criteria were met in 40.7%. Cataract was present in 77.4%. ADGRV1 genotypes had the most VF loss, whereas USH2A patients had greater myopia and CDH23 had the most astigmatism. Variants absent from gnomAD non-Finnish Europeans and ClinVar represented more than 20% of the variants identified and were detected in ADGRV1, ARSG, CDH23, MYO7A, and USH2A. Conclusions: USH is a genetically diverse group of AR IRDs that have a profound impact on affected individuals and their families. The prevalence and phenotype/genotype characteristics of USH in Ireland have, as yet, gone unreported. Understanding the genotype of Irish USH patients may guide clinical and genetic characterization facilitating access to existing/novel therapeutics.


Assuntos
Degeneração Retiniana , Síndromes de Usher , Humanos , Síndromes de Usher/epidemiologia , Síndromes de Usher/genética , Síndromes de Usher/diagnóstico , Irlanda/epidemiologia , Mutação , Genótipo , Fenótipo , Proteínas da Matriz Extracelular/genética , Linhagem
4.
Sci Rep ; 13(1): 9380, 2023 06 09.
Artigo em Inglês | MEDLINE | ID: mdl-37296172

RESUMO

Over 15% of probands in a large cohort of more than 1500 inherited retinal degeneration patients present with a clinical diagnosis of Stargardt disease (STGD1), a recessive form of macular dystrophy caused by biallelic variants in the ABCA4 gene. Participants were clinically examined and underwent either target capture sequencing of the exons and some pathogenic intronic regions of ABCA4, sequencing of the entire ABCA4 gene or whole genome sequencing. ABCA4 c.4539 + 2028C > T, p.[= ,Arg1514Leufs*36] is a pathogenic deep intronic variant that results in a retina-specific 345-nucleotide pseudoexon inclusion. Through analysis of the Irish STGD1 cohort, 25 individuals across 18 pedigrees harbour ABCA4 c.4539 + 2028C > T and another pathogenic variant. This includes, to the best of our knowledge, the only two homozygous patients identified to date. This provides important evidence of variant pathogenicity for this deep intronic variant, highlighting the value of homozygotes for variant interpretation. 15 other heterozygous incidents of this variant in patients have been reported globally, indicating significant enrichment in the Irish population. We provide detailed genetic and clinical characterization of these patients, illustrating that ABCA4 c.4539 + 2028C > T is a variant of mild to intermediate severity. These results have important implications for unresolved STGD1 patients globally with approximately 10% of the population in some western countries claiming Irish heritage. This study exemplifies that detection and characterization of founder variants is a diagnostic imperative.


Assuntos
Transportadores de Cassetes de Ligação de ATP , Degeneração Macular , Humanos , Doença de Stargardt/genética , Transportadores de Cassetes de Ligação de ATP/genética , Mutação , Degeneração Macular/genética , Retina , Linhagem
5.
HGG Adv ; 4(2): 100181, 2023 04 13.
Artigo em Inglês | MEDLINE | ID: mdl-36785559

RESUMO

A significant number of individuals with a rare disorder such as Usher syndrome (USH) and (non-)syndromic autosomal recessive retinitis pigmentosa (arRP) remain genetically unexplained. Therefore, we assessed subjects suspected of USH2A-associated disease and no or mono-allelic USH2A variants using whole genome sequencing (WGS) followed by an improved pipeline for variant interpretation to provide a conclusive diagnosis. One hundred subjects were screened using WGS to identify causative variants in USH2A or other USH/arRP-associated genes. In addition to the existing variant interpretation pipeline, a particular focus was put on assessing splice-affecting properties of variants, both in silico and in vitro. Also structural variants were extensively addressed. For variants resulting in pseudoexon inclusion, we designed and evaluated antisense oligonucleotides (AONs) using minigene splice assays and patient-derived photoreceptor precursor cells. Biallelic variants were identified in 49 of 100 subjects, including novel splice-affecting variants and structural variants, in USH2A or arRP/USH-associated genes. Thirteen variants were shown to affect USH2A pre-mRNA splicing, including four deep-intronic USH2A variants resulting in pseudoexon inclusion, which could be corrected upon AON treatment. We have shown that WGS, combined with a thorough variant interpretation pipeline focused on assessing pre-mRNA splicing defects and structural variants, is a powerful method to provide subjects with a rare genetic condition, a (likely) conclusive genetic diagnosis. This is essential for the development of future personalized treatments and for patients to be eligible for such treatments.


Assuntos
Retinose Pigmentar , Síndromes de Usher , Humanos , Síndromes de Usher/diagnóstico , Precursores de RNA , Mutação , Linhagem , Retinose Pigmentar/diagnóstico , Sequenciamento Completo do Genoma , Proteínas da Matriz Extracelular/genética
6.
Genes (Basel) ; 13(4)2022 03 29.
Artigo em Inglês | MEDLINE | ID: mdl-35456422

RESUMO

Inherited retinal degenerations (IRDs) account for over one third of the underlying causes of blindness in the paediatric population. Patients with IRDs often experience long delays prior to reaching a definitive diagnosis. Children attending a tertiary care paediatric ophthalmology department with phenotypic (i.e., clinical and/or electrophysiologic) evidence suggestive of IRD were contacted for genetic testing during the SARS-CoV-2-19 pandemic using a "telegenetics" approach. Genetic testing approach was panel-based next generation sequencing (351 genes) via a commercial laboratory (Blueprint Genetics, Helsinki, Finland). Of 70 patient samples from 57 pedigrees undergoing genetic testing, a causative genetic variant(s) was detected for 60 patients (85.7%) from 47 (82.5%) pedigrees. Of the 60 genetically resolved IRD patients, 5% (n = 3) are eligible for approved therapies (RPE65) and 38.3% (n = 23) are eligible for clinical trial-based gene therapies including CEP290 (n = 2), CNGA3 (n = 3), CNGB3 (n = 6), RPGR (n = 5) and RS1 (n = 7). The early introduction of genetic testing in the diagnostic/care pathway for children with IRDs is critical for genetic counselling of these families prior to upcoming gene therapy trials. Herein, we describe the pathway used, the clinical and genetic findings, and the therapeutic implications of the first systematic coordinated round of genetic testing of a paediatric IRD cohort in Ireland.


Assuntos
COVID-19 , Degeneração Retiniana , Antígenos de Neoplasias , Proteínas de Ciclo Celular/genética , Criança , Proteínas do Citoesqueleto/genética , Eletrofisiologia , Proteínas do Olho/genética , Testes Genéticos , Humanos , Degeneração Retiniana/diagnóstico , Degeneração Retiniana/genética , Degeneração Retiniana/terapia , SARS-CoV-2
7.
Hum Genet ; 141(11): 1723-1738, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35226187

RESUMO

Usher syndrome (USH) is an autosomal recessively inherited disease characterized by sensorineural hearing loss (SNHL) and retinitis pigmentosa (RP) with or without vestibular dysfunction. It is highly heterogeneous both clinically and genetically. Recently, variants in the arylsulfatase G (ARSG) gene have been reported to underlie USH type IV. This distinct type of USH is characterized by late-onset RP with predominantly pericentral and macular changes, and late onset SNHL without vestibular dysfunction. In this study, we describe the USH type IV phenotype in three unrelated subjects. We identified three novel pathogenic variants, two novel likely pathogenic variants, and one previously described pathogenic variant in ARSG. Functional experiments indicated a loss of sulfatase activity of the mutant proteins. Our findings confirm that ARSG variants cause the newly defined USH type IV and support the proposed extension of the phenotypic USH classification.


Assuntos
Retinose Pigmentar , Síndromes de Usher , Arilsulfatases , Humanos , Proteínas Mutantes , Retinose Pigmentar/genética , Sulfatases , Síndromes de Usher/genética , Síndromes de Usher/metabolismo
8.
Int J Mol Sci ; 23(2)2022 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-35055178

RESUMO

Although rare, inherited retinal degenerations (IRDs) are the most common reason for blind registration in the working age population. They are highly genetically heterogeneous (>300 known genetic loci), and confirmation of a molecular diagnosis is a prerequisite for many therapeutic clinical trials and approved treatments. First-tier genetic testing of IRDs with panel-based next-generation sequencing (pNGS) has a diagnostic yield of ≈70-80%, leaving the remaining more challenging cases to be resolved by second-tier testing methods. This study describes the phenotypic reassessment of patients with a negative result from first-tier pNGS and the rationale, outcomes, and cost of second-tier genetic testing approaches. Removing non-IRD cases from consideration and utilizing case-appropriate second-tier genetic testing techniques, we genetically resolved 56% of previously unresolved pedigrees, bringing the overall resolve rate to 92% (388/423). At present, pNGS remains the most cost-effective first-tier approach for the molecular assessment of diverse IRD populations Second-tier genetic testing should be guided by clinical (i.e., reassessment, multimodal imaging, electrophysiology), and genetic (i.e., single alleles in autosomal recessive disease) indications to achieve a genetic diagnosis in the most cost-effective manner.


Assuntos
Testes Genéticos/métodos , Degeneração Retiniana/genética , Análise de Sequência de DNA/métodos , Adulto , Idoso , Feminino , Fundo de Olho , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Masculino , Pessoa de Meia-Idade , Fenótipo , Degeneração Retiniana/diagnóstico por imagem
9.
Case Rep Ophthalmol ; 13(3): 1015-1023, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36605040

RESUMO

The conjunction of nanophthalmos (NO) and retinitis pigmentosa (RP) provides challenges to effective clinical management while narrowing the genetic spectrum for targeted molecular diagnostics. This case study describes two not knowingly related adult cases of MFRP-associated retinopathy and nanophthalmos (MARN). Structural features including short axial lengths (mean 16.4 mm), steep keratometry (mean 49.98 D), adult-onset signs, and symptoms of retinal dystrophy and acquired disease (i.e., cataract, angle-closure glaucoma) were evident in both cases. Pathogenic variants in the MFRP gene impair both prenatal eye growth and childhood emmetropization while also leading to RPE/outer retinal degeneration in 75% of cases. We discuss the "small-eye" phenotype spectrum and associated defining characteristics, molecular mechanisms with particular focus on MFRP-associated NO with RP features (MARN), the spectrum of visual morbidities (e.g., extreme refractive error, amblyopia, cystoid macular lesions, early cataract) and the challenges of their treatment/surgical management.

10.
J Med Genet ; 59(5): 438-444, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-33910932

RESUMO

BACKGROUND: Inherited retinal diseases (IRDs) can be caused by variants in >270 genes. The Bardet-Biedl syndrome 1 (BBS1) gene is one of these genes and may be associated with syndromic and non-syndromic autosomal recessive retinitis pigmentosa (RP). Here, we identified a branchpoint variant in BBS1 and assessed its pathogenicity by in vitro functional analysis. METHODS: Whole genome sequencing was performed for three unrelated monoallelic BBS1 cases with non-syndromic RP. A fourth case received MGCM 105 gene panel analysis. Functional analysis using a midigene splice assay was performed for the putative pathogenic branchpoint variant in BBS1. After confirmation of its pathogenicity, patients were clinically re-evaluated, including assessment of non-ocular features of Bardet-Biedl syndrome. RESULTS: Clinical assessments of probands showed that all individuals displayed non-syndromic RP with macular involvement. Through detailed variant analysis and prioritisation, two pathogenic variants in BBS1, the most common missense variant, c.1169T>G (p.(Met390Arg)), and a branchpoint variant, c.592-21A>T, were identified. Segregation analysis confirmed that in all families, probands were compound heterozygous for c.1169T>G and c.592-21A>T. Functional analysis of the branchpoint variant revealed a complex splicing defect including exon 8 and exon 7/8 skipping, and partial in-frame deletion of exon 8. CONCLUSION: A putative severe branchpoint variant in BBS1, together with a mild missense variant, underlies non-syndromic RP in four unrelated individuals. To our knowledge, this is the first report of a pathogenic branchpoint variant in IRDs that results in a complex splice defect. In addition, this research highlights the importance of the analysis of non-coding regions in order to provide a conclusive molecular diagnosis.


Assuntos
Síndrome de Bardet-Biedl , Retinose Pigmentar , Síndrome de Bardet-Biedl/diagnóstico , Síndrome de Bardet-Biedl/genética , Síndrome de Bardet-Biedl/patologia , Análise Mutacional de DNA , Humanos , Proteínas Associadas aos Microtúbulos/genética , Mutação/genética , Linhagem , Retina/patologia , Retinose Pigmentar/diagnóstico , Retinose Pigmentar/genética , Retinose Pigmentar/patologia
11.
NPJ Genom Med ; 6(1): 97, 2021 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-34795310

RESUMO

Inherited retinal diseases (IRDs) are a major cause of visual impairment. These clinically heterogeneous disorders are caused by pathogenic variants in more than 270 genes. As 30-40% of cases remain genetically unexplained following conventional genetic testing, we aimed to obtain a genetic diagnosis in an IRD cohort in which the genetic cause was not found using whole-exome sequencing or targeted capture sequencing. We performed whole-genome sequencing (WGS) to identify causative variants in 100 unresolved cases. After initial prioritization, we performed an in-depth interrogation of all noncoding and structural variants in genes when one candidate variant was detected. In addition, functional analysis of putative splice-altering variants was performed using in vitro splice assays. We identified the genetic cause of the disease in 24 patients. Causative coding variants were observed in genes such as ATXN7, CEP78, EYS, FAM161A, and HGSNAT. Gene disrupting structural variants were also detected in ATXN7, PRPF31, and RPGRIP1. In 14 monoallelic cases, we prioritized candidate noncanonical splice sites or deep-intronic variants that were predicted to disrupt the splicing process based on in silico analyses. Of these, seven cases were resolved as they carried pathogenic splice defects. WGS is a powerful tool to identify causative variants residing outside coding regions or heterozygous structural variants. This approach was most efficient in cases with a distinct clinical diagnosis. In addition, in vitro splice assays provide important evidence of the pathogenicity of rare variants.

13.
Int J Mol Sci ; 22(12)2021 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-34203967

RESUMO

A substantial proportion of subjects with autosomal recessive retinitis pigmentosa (arRP) or Usher syndrome type II (USH2) lacks a genetic diagnosis due to incomplete USH2A screening in the early days of genetic testing. These cases lack eligibility for optimal genetic counseling and future therapy. USH2A defects are the most frequent cause of USH2 and are also causative in individuals with arRP. Therefore, USH2A is an important target for genetic screening. The aim of this study was to assess unscreened or incompletely screened and unexplained USH2 and arRP cases for (likely) pathogenic USH2A variants. Molecular inversion probe (MIP)-based sequencing was performed for the USH2A exons and their flanking regions, as well as published deep-intronic variants. This was done to identify single nucleotide variants (SNVs) and copy number variants (CNVs) in 29 unscreened or partially pre-screened USH2 and 11 partially pre-screened arRP subjects. In 29 out of these 40 cases, two (likely) pathogenic variants were successfully identified. Four of the identified SNVs and one CNV were novel. One previously identified synonymous variant was demonstrated to affect pre-mRNA splicing. In conclusion, genetic diagnoses were obtained for a majority of cases, which confirms that MIP-based sequencing is an effective screening tool for USH2A. Seven unexplained cases were selected for future analysis with whole genome sequencing.


Assuntos
Análise Custo-Benefício , Éxons/genética , Proteínas da Matriz Extracelular/genética , Sondas Moleculares/metabolismo , Sítios de Splice de RNA/genética , Retinose Pigmentar/genética , Análise de Sequência de DNA , Síndromes de Usher/genética , Sequência de Bases , Variações do Número de Cópias de DNA/genética , Deleção de Genes , Humanos , Polimorfismo de Nucleotídeo Único/genética , Retinose Pigmentar/economia , Síndromes de Usher/economia
14.
Int J Mol Sci ; 22(11)2021 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-34073611

RESUMO

Inherited retinal diseases (IRDs) represent a collection of phenotypically and genetically diverse conditions. IRDs phenotype(s) can be isolated to the eye or can involve multiple tissues. These conditions are associated with diverse forms of inheritance, and variants within the same gene often can be associated with multiple distinct phenotypes. Such aspects of the IRDs highlight the difficulty met when establishing a genetic diagnosis in patients. Here we provide an overview of cutting-edge next-generation sequencing techniques and strategies currently in use to maximise the effectivity of IRD gene screening. These techniques have helped researchers globally to find elusive causes of IRDs, including copy number variants, structural variants, new IRD genes and deep intronic variants, among others. Resolving a genetic diagnosis with thorough testing enables a more accurate diagnosis and more informed prognosis and should also provide information on inheritance patterns which may be of particular interest to patients of a child-bearing age. Given that IRDs are heritable conditions, genetic counselling may be offered to help inform family planning, carrier testing and prenatal screening. Additionally, a verified genetic diagnosis may enable access to appropriate clinical trials or approved medications that may be available for the condition.


Assuntos
Aconselhamento Genético , Doenças Genéticas Inatas , Testes Genéticos , Sequenciamento de Nucleotídeos em Larga Escala , Diagnóstico Pré-Natal , Doenças Retinianas , Doenças Genéticas Inatas/diagnóstico , Doenças Genéticas Inatas/genética , Humanos , Doenças Retinianas/diagnóstico , Doenças Retinianas/genética
15.
Orphanet J Rare Dis ; 16(1): 200, 2021 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-33952326

RESUMO

INTRODUCTION: Inherited retinal degenerations (IRD) are rare genetic disorders with > 300 known genetic loci, manifesting variably progressive visual dysfunction. IRDs were historically underserved due to lack of effective interventions. Many novel therapies will require accurate diagnosis (phenotype and genotype), thus an efficient and effective pathway for assessment and management is required. METHODS: Using surveys of existing practice patterns and advice from international experts, an all-Ireland IRD service (Target 5000) was designed. Detailed phenotyping was followed by next generation genetic sequencing in both a research and accredited laboratory. Unresolved pedigrees underwent further studies (whole gene/whole exome/whole genome sequencing). Novel variants were interrogated for pathogenicity (cascade screening, in silico analysis, functional studies). A multidisciplinary team (MDT; ophthalmologists, physicians, geneticists, genetic counsellors) reconciled phenotype with genotype. A bespoke care plan was created for each patient comprising supports, existing interventions, and novel therapies/clinical trials. RESULTS AND DISCUSSION: Prior to Target 5000, a significant cohort of patients were not engaged with healthcare/support services due to lack of effective interventions. Pathogenic or likely pathogenic variants in IRD-associated genes were detected in 62.3%, with 11.6% having variants of unknown significance. The genotyping arm of Target 5000 allowed a 42.73% cost saving over independent testing, plus the value of MDT expertise/processing. Partial funding has transferred from charitable sources to government resources. CONCLUSION: Target 5000 demonstrates efficacious and efficient clinical/genetic diagnosis, while discovering novel IRD-implicated genes/variants and investigating mechanisms of disease and avenues of intervention. This model could be used to develop similar IRD programmes in small/medium-sized nations.


Assuntos
Degeneração Retiniana , Distrofias Retinianas , Exoma , Humanos , Irlanda , Mutação , Linhagem , Distrofias Retinianas/genética
16.
Genet Med ; 22(7): 1235-1246, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32307445

RESUMO

PURPOSE: Missing heritability in human diseases represents a major challenge, and this is particularly true for ABCA4-associated Stargardt disease (STGD1). We aimed to elucidate the genomic and transcriptomic variation in 1054 unsolved STGD and STGD-like probands. METHODS: Sequencing of the complete 128-kb ABCA4 gene was performed using single-molecule molecular inversion probes (smMIPs), based on a semiautomated and cost-effective method. Structural variants (SVs) were identified using relative read coverage analyses and putative splice defects were studied using in vitro assays. RESULTS: In 448 biallelic probands 14 known and 13 novel deep-intronic variants were found, resulting in pseudoexon (PE) insertions or exon elongations in 105 alleles. Intriguingly, intron 13 variants c.1938-621G>A and c.1938-514G>A resulted in dual PE insertions consisting of the same upstream, but different downstream PEs. The intron 44 variant c.6148-84A>T resulted in two PE insertions and flanking exon deletions. Eleven distinct large deletions were found, two of which contained small inverted segments. Uniparental isodisomy of chromosome 1 was identified in one proband. CONCLUSION: Deep sequencing of ABCA4 and midigene-based splice assays allowed the identification of SVs and causal deep-intronic variants in 25% of biallelic STGD1 cases, which represents a model study that can be applied to other inherited diseases.


Assuntos
Degeneração Macular , Transcriptoma , Transportadores de Cassetes de Ligação de ATP/genética , Genômica , Humanos , Íntrons , Degeneração Macular/genética , Mutação , Linhagem , Doença de Stargardt
17.
Genes (Basel) ; 11(1)2020 01 16.
Artigo em Inglês | MEDLINE | ID: mdl-31963381

RESUMO

The Irish national registry for inherited retinal degenerations (Target 5000) is a clinical and scientific program to identify individuals in Ireland with inherited retinal disorders and to attempt to ascertain the genetic cause underlying the disease pathology. Potential participants first undergo a clinical assessment, which includes clinical history and analysis with multimodal retinal imaging, electrophysiology, and visual field testing. If suitable for recruitment, a sample is taken and used for genetic analysis. Genetic analysis is conducted by use of a retinal gene panel target capture sequencing approach. With over 1000 participants from 710 pedigrees now screened, there is a positive candidate variant detection rate of approximately 70% (495/710). Where an autosomal recessive inheritance pattern is observed, an additional 9% (64/710) of probands have tested positive for a single candidate variant. Many novel variants have also been detected as part of this endeavor. The target capture approach is an economic and effective means of screening patients with inherited retinal disorders. Despite the advances in sequencing technology and the ever-decreasing associated processing costs, target capture remains an attractive option as the data produced is easily processed, analyzed, and stored compared to more comprehensive methods. However, with decreasing costs of whole genome and whole exome sequencing, the focus will likely move towards these methods for more comprehensive data generation.


Assuntos
Degeneração Retiniana/genética , Doenças Retinianas/genética , Adulto , Idoso , Exoma/genética , Feminino , Testes Genéticos/métodos , Genótipo , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Humanos , Irlanda/epidemiologia , Masculino , Pessoa de Meia-Idade , Mutação/genética , Linhagem , Retina/metabolismo , Retina/fisiopatologia , Testes de Campo Visual/métodos
18.
Eye (Lond) ; 34(4): 690-694, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31527767

RESUMO

BACKGROUND/OBJECTIVES: Fibrillin-1 (FBN1) mutations cause connective tissue dysgenesis the main ocular manifestation being ectopia lentis (EL), which may be syndromic or non-syndromic. We describe a pedigree with a FBN1 mutation causing non-syndromic EL with retinal detachment (RRD) and their management. SUBJECTS/METHODS: Patients with familial EL with RRD were invited to participate (vitreoretinopathy branch of Target 5000, the Irish inherited retinal degeneration study). All patients signed full informed consent. The study was approved by the Institutional Review Board of the Mater Hospital, Dublin and abided by the Declaration of Helsinki. RESULTS: Seven adults were affected with bilateral EL. All subjects had RRD with bilateral non-synchronous RRD in 57%. CONCLUSIONS: The FBN1 variant described herein confers an increased risk of both EL and RRD and can now be upgraded to 'pathogenic' ACMG status.


Assuntos
Ectopia do Cristalino , Síndrome de Marfan , Descolamento Retiniano , Adulto , Ectopia do Cristalino/genética , Fibrilina-1/genética , Fibrilinas , Humanos , Síndrome de Marfan/complicações , Síndrome de Marfan/diagnóstico , Síndrome de Marfan/genética , Proteínas dos Microfilamentos/genética , Mutação , Linhagem , Fenótipo , Descolamento Retiniano/genética
19.
Adv Exp Med Biol ; 1185: 203-207, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31884612

RESUMO

Here we describe the identification and evaluation of a rare novel autosomal recessive mutation in FLVCR1 which is implicated solely in RP, with no evidence of posterior column ataxia in a number of affected patients. The mutation was detected as part of an ongoing target capture NGS study (Target 5000), aimed at identifying candidate variants in pedigrees with inherited retinal degenerations (IRDs) in Ireland. The mutation, FLVCR1 p.Tyr341Cys, was observed homozygously in seven affected patients across four pedigrees. FLVCR1 p.Tyr341Cys is a very rare mutation, with no previous reports of pathogenicity and no homozygous cases reported in online allele frequency databases. Our sequencing study identified seven homozygotes across multiple pedigrees, all with similar clinical presentations of RP without ataxia, a scenario extremely unlikely to occur by chance for a benign allele, particularly given the low population frequency of p.Tyr341Cys.


Assuntos
Proteínas de Membrana Transportadoras/genética , Receptores Virais/genética , Retinose Pigmentar/genética , Análise Mutacional de DNA , Humanos , Irlanda , Mutação , Linhagem , Degenerações Espinocerebelares
20.
BMC Med Genet ; 19(1): 195, 2018 11 12.
Artigo em Inglês | MEDLINE | ID: mdl-30419843

RESUMO

BACKGROUND: To describe the clinical phenotype and genetic cause underlying the disease pathology in a pedigree (affected n = 9) with X-linked retinoschisis (XLRS1) due to a novel RS1 mutation and to assess suitability for novel therapies using multimodal imaging. METHODS: The Irish National Registry for Inherited Retinal Degenerations (Target 5000) is a program including clinical history and examination with multimodal retinal imaging, electrophysiology, visual field testing and genetic analysis. Nine affected patients were identified across 3 generations of an XLRS1 pedigree. DNA sequencing was performed for each patient, one carrier female and one unaffected relative. Pedigree mapping revealed a further 4 affected males. RESULTS: All affected patients had a history of reduced visual acuity and dyschromatopsia; however, the severity of phenotype varied widely between the nine affected subjects. The stage of disease was classified as previously described. Phenotypic severity was not linearly correlated with age. A novel RS1 (Xp22.2) mutation was detected (NM_000330: c.413C > A) resulting in a p.Thr138Asn substitution. Protein modelling demonstrated a change in higher order protein folding that is likely pathogenic. CONCLUSIONS: This family has a novel gene mutation in RS1 with clinical evidence of XLRS1. A proportion of the older generation has developed end-stage macular atrophy; however, the severity is variable. Confirmation of genotype in the affected grandsons of this pedigree in principle may enable them to avail of upcoming gene therapies, provided there is anatomical evidence (from multimodal imaging) of potentially reversible early stage disease.


Assuntos
Proteínas do Olho/genética , Degeneração Macular/genética , Imagem Multimodal/métodos , Mutação , Retinosquise/genética , Adolescente , Idoso , Substituição de Aminoácidos , Sequência de Bases , Progressão da Doença , Proteínas do Olho/química , Proteínas do Olho/metabolismo , Feminino , Expressão Gênica , Genótipo , Humanos , Degeneração Macular/complicações , Degeneração Macular/diagnóstico por imagem , Degeneração Macular/patologia , Masculino , Pessoa de Meia-Idade , Modelos Moleculares , Linhagem , Fenótipo , Conformação Proteica , Dobramento de Proteína , Retinosquise/complicações , Retinosquise/diagnóstico por imagem , Retinosquise/patologia , Índice de Gravidade de Doença
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA