Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Cells ; 12(8)2023 04 13.
Artigo em Inglês | MEDLINE | ID: mdl-37190060

RESUMO

Primordial germ cells (PGCs) are germline-restricted embryonic cells that form the functional gametes of the adult animal. The use of avian PGCs in biobanking and producing genetically modified birds has driven research on the in vitro propagation and manipulation of these embryonic cells. In avian species, PGCs are hypothesized to be sexually undetermined at an early embryonic stage and undergo differentiation into an oocyte or spermatogonial fate dictated by extrinsic factors present in the gonad. However, chicken male and female PGCs require different culture conditions, suggesting that there are sex-specific differences, even at early stages. To understand potential differences between male and female chicken PGCs during migratory stages, we studied the transcriptomes of circulatory stage male and female PGCs propagated in a serum-free medium. We found that in vitro cultured PGCs were transcriptionally similar to their in ovo counterparts, with differences in cell proliferation pathways. Our analysis also revealed sex-specific transcriptome differences between male and female cultured PGCs, with notable differences in Smad7 and NCAM2 expression. A comparison of chicken PGCs with pluripotent and somatic cell types identified a set of genes that are exclusive to germ cells, enriched in the germplasm, and associated with germ cell development.


Assuntos
Galinhas , Transcriptoma , Animais , Feminino , Masculino , Galinhas/genética , Transcriptoma/genética , Caracteres Sexuais , Bancos de Espécimes Biológicos , Células Germinativas/metabolismo
2.
Sci Rep ; 13(1): 2195, 2023 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-36750679

RESUMO

Plant precursor miRNAs (pre-miRNA) have conserved evolutionary footprints that correlate with mode of miRNA biogenesis. In plants, base to loop and loop to base modes of biogenesis have been reported. Conserved structural element(s) in pre-miRNA play a major role in turn over and abundance of mature miRNA. Pre-miR396c sequences and secondary structural characteristics across Oryza species are presented. Based on secondary structure, twelve Oryza pre-miR396c sequences are divided into three groups, with the precursor from halophytic Oryza coarctata forming a distinct group. The miRNA-miRNA* duplex region is completely conserved across eleven Oryza species as are other structural elements in the pre-miRNA, suggestive of an evolutionarily conserved base-to-loop mode of miRNA biogenesis. SNPs within O. coarctata mature miR396c sequence and miRNA* region have the potential to alter target specificity and association with the RNA-induced silencing complex. A conserved SNP variation, rs10234287911 (G/A), identified in O. sativa pre-miR396c sequences alters base pairing above the miRNA-miRNA* duplex. The more stable structure conferred by the 'A10234287911' allele may promote better processing vis-à-vis the structure conferred by 'G10234287911' allele. We also examine pri- and pre-miR396c expression in cultivated rice under heat and salinity and their correlation with miR396c expression.


Assuntos
MicroRNAs , Oryza , MicroRNAs/genética , Oryza/genética , Polimorfismo de Nucleotídeo Único , Plantas Tolerantes a Sal/genética
3.
Nat Commun ; 13(1): 2608, 2022 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-35546158

RESUMO

Chromosome folding has profound impacts on gene regulation, whose evolutionary consequences are far from being understood. Here we explore the relationship between 3D chromatin remodelling in mouse germ cells and evolutionary changes in genome structure. Using a comprehensive integrative computational analysis, we (i) reconstruct seven ancestral rodent genomes analysing whole-genome sequences of 14 species representatives of the major phylogroups, (ii) detect lineage-specific chromosome rearrangements and (iii) identify the dynamics of the structural and epigenetic properties of evolutionary breakpoint regions (EBRs) throughout mouse spermatogenesis. Our results show that EBRs are devoid of programmed meiotic DNA double-strand breaks (DSBs) and meiotic cohesins in primary spermatocytes, but are associated in post-meiotic cells with sites of DNA damage and functional long-range interaction regions that recapitulate ancestral chromosomal configurations. Overall, we propose a model that integrates evolutionary genome reshuffling with DNA damage response mechanisms and the dynamic spatial genome organisation of germ cells.


Assuntos
Montagem e Desmontagem da Cromatina , Células Germinativas , Animais , Cromatina/genética , Montagem e Desmontagem da Cromatina/genética , Quebras de DNA de Cadeia Dupla , Genoma , Masculino , Meiose/genética , Camundongos , Espermatogênese/genética
4.
Nat Commun ; 12(1): 659, 2021 01 28.
Artigo em Inglês | MEDLINE | ID: mdl-33510156

RESUMO

Poultry is the most abundant livestock species with over 60 billion chickens raised globally per year. The majority of chicken are produced from commercial flocks, however many indigenous chicken breeds play an important role in rural economies as they are well adapted to local environmental and scavenging conditions. The ability to make precise genetic changes in chicken will permit the validation of genetic variants responsible for climate adaptation and disease resilience, and the transfer of beneficial alleles between breeds. Here, we generate a novel inducibly sterile surrogate host chicken. Introducing donor genome edited primordial germ cells into the sterile male and female host embryos produces adult chicken carrying only exogenous germ cells. Subsequent direct mating of the surrogate hosts, Sire Dam Surrogate (SDS) mating, recreates the donor chicken breed carrying the edited allele in a single generation. We demonstrate the introgression and validation of two feather trait alleles, Dominant white and Frizzle into two pure chicken breeds using the SDS surrogate hosts.


Assuntos
Cruzamento/métodos , Galinhas/genética , Células Germinativas/metabolismo , Reprodução/genética , Alelos , Animais , Plumas , Feminino , Infertilidade/genética , Masculino , Fenótipo , Reprodutibilidade dos Testes
5.
Funct Plant Biol ; 48(1): 88-102, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32741427

RESUMO

In plants, the biosynthesis of the phenylpropanoid, flavonoid and fatty acid pathway monomers, polymers and conjugated metabolites play a vital role in disease resistance. These are generally deposited to reinforce cell walls to contain the pathogen to the site of infection. Identification of sequence variants in genes that biosynthesise these resistance metabolites can explain the mechanisms of disease resistance. The resistant and susceptible genotypes inoculated with Phytophthora infestans were RNA sequenced to identify the single nucleotide polymorphisms (SNPs) and insertion/deletion (InDel) variations. The SNPs/InDels were annotated and classified into different categories based on their effect on gene functions. In the selected 25 biosynthetic genes overlapping 39 transcripts, a total of 52 SNPs/InDels were identified in the protein-coding (CDS) regions. These were categorised as deleterious based on prediction of their effects on protein structure and function. The SNPs/InDels data obtained in this study can be used in genome editing to enhance late blight resistance in Russet Burbank and other potato cultivars.


Assuntos
Phytophthora infestans , Solanum tuberosum , Resistência à Doença/genética , Genótipo , Phytophthora infestans/genética , Doenças das Plantas/genética , Solanum tuberosum/genética
6.
Nat Genet ; 51(5): 857-864, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-31036963

RESUMO

We report a map of 4.97 million single-nucleotide polymorphisms of the chickpea from whole-genome resequencing of 429 lines sampled from 45 countries. We identified 122 candidate regions with 204 genes under selection during chickpea breeding. Our data suggest the Eastern Mediterranean as the primary center of origin and migration route of chickpea from the Mediterranean/Fertile Crescent to Central Asia, and probably in parallel from Central Asia to East Africa (Ethiopia) and South Asia (India). Genome-wide association studies identified 262 markers and several candidate genes for 13 traits. Our study establishes a foundation for large-scale characterization of germplasm and population genomics, and a resource for trait dissection, accelerating genetic gains in future chickpea breeding.


Assuntos
Cicer/genética , Cicer/classificação , DNA de Plantas/genética , Domesticação , Marcadores Genéticos , Variação Genética , Genoma de Planta , Estudo de Associação Genômica Ampla , Sequenciamento de Nucleotídeos em Larga Escala , Desequilíbrio de Ligação , Filogenia , Melhoramento Vegetal , Polimorfismo de Nucleotídeo Único , Locos de Características Quantitativas , Análise de Sequência de DNA
7.
Plant Biotechnol J ; 16(4): 890-901, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-28913885

RESUMO

To accelerate genomics research and molecular breeding applications in chickpea, a high-throughput SNP genotyping platform 'Axiom® CicerSNP Array' has been designed, developed and validated. Screening of whole-genome resequencing data from 429 chickpea lines identified 4.9 million SNPs, from which a subset of 70 463 high-quality nonredundant SNPs was selected using different stringent filter criteria. This was further narrowed down to 61 174 SNPs based on p-convert score ≥0.3, of which 50 590 SNPs could be tiled on array. Among these tiled SNPs, a total of 11 245 SNPs (22.23%) were from the coding regions of 3673 different genes. The developed Axiom® CicerSNP Array was used for genotyping two recombinant inbred line populations, namely ICCRIL03 (ICC 4958 × ICC 1882) and ICCRIL04 (ICC 283 × ICC 8261). Genotyping data reflected high success and polymorphic rate, with 15 140 (29.93%; ICCRIL03) and 20 018 (39.57%; ICCRIL04) polymorphic SNPs. High-density genetic maps comprising 13 679 SNPs spanning 1033.67 cM and 7769 SNPs spanning 1076.35 cM were developed for ICCRIL03 and ICCRIL04 populations, respectively. QTL analysis using multilocation, multiseason phenotyping data on these RILs identified 70 (ICCRIL03) and 120 (ICCRIL04) main-effect QTLs on genetic map. Higher precision and potential of this array is expected to advance chickpea genetics and breeding applications.


Assuntos
Mapeamento Cromossômico/métodos , Cicer/genética , Técnicas de Genotipagem/métodos , Melhoramento Vegetal/métodos , Polimorfismo de Nucleotídeo Único , Cicer/fisiologia , Secas , Genoma de Planta , Análise de Sequência com Séries de Oligonucleotídeos , Raízes de Plantas/genética , Raízes de Plantas/fisiologia , Transpiração Vegetal/genética , Locos de Características Quantitativas , Reprodutibilidade dos Testes , Estresse Fisiológico/genética
8.
Nat Biotechnol ; 35(10): 969-976, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28922347

RESUMO

Pearl millet [Cenchrus americanus (L.) Morrone] is a staple food for more than 90 million farmers in arid and semi-arid regions of sub-Saharan Africa, India and South Asia. We report the ∼1.79 Gb draft whole genome sequence of reference genotype Tift 23D2B1-P1-P5, which contains an estimated 38,579 genes. We highlight the substantial enrichment for wax biosynthesis genes, which may contribute to heat and drought tolerance in this crop. We resequenced and analyzed 994 pearl millet lines, enabling insights into population structure, genetic diversity and domestication. We use these resequencing data to establish marker trait associations for genomic selection, to define heterotic pools, and to predict hybrid performance. We believe that these resources should empower researchers and breeders to improve this important staple crop.


Assuntos
Agricultura , Clima Desértico , Genoma de Planta , Pennisetum/genética , Característica Quantitativa Herdável , Sequência de Bases , Sequência Conservada , Genes de Plantas , Variação Genética , Estudo de Associação Genômica Ampla , Hibridização Genética , Anotação de Sequência Molecular
9.
Front Plant Sci ; 8: 488, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28487701

RESUMO

Biotic stress in legume crops is one of the major threats to crop yield and productivity. Being sessile organisms, plants have evolved a myriad of mechanisms to combat different stresses imposed on them. One such mechanism, deciphered in the last decade, is small RNA (sRNA) mediated defense in plants. Small RNAs (sRNAs) have emerged as one of the major players in gene expression regulation in plants during developmental stages and under stress conditions. They are known to act both at transcriptional and post-transcriptional levels. Dicer-like (DCL), Argonaute (AGO), and RNA dependent RNA polymerase (RDR) constitute the major components of sRNA biogenesis machinery and are known to play a significant role in combating biotic and abiotic stresses. This study is, therefore, focused on identification and characterization of sRNA biogenesis proteins in three important legume crops, namely chickpea, pigeonpea, and groundnut. Phylogenetic analysis of these proteins between legume species classified them into distinct clades and suggests the evolutionary conservation of these genes across the members of Papillionidoids subfamily. Variable expression of sRNA biogenesis genes in response to the biotic stresses among the three legumes indicate the possible existence of specialized regulatory mechanisms in different legumes. This is the first ever study to understand the role of sRNA biogenesis genes in response to pathogen attacks in the studied legumes.

10.
Sci Rep ; 6: 38636, 2016 12 16.
Artigo em Inglês | MEDLINE | ID: mdl-27982107

RESUMO

In order to understand the impact of breeding on genetic diversity and gain insights into temporal trends in diversity in chickpea, a set of 100 chickpea varieties released in 14 countries between 1948 and 2012 were re-sequenced. For analysis, the re-sequencing data for 29 varieties available from an earlier study was also included. Copy number variations and presence absence variations identified in the present study have potential to drive phenotypic variations for trait improvement. Re-sequencing of a large number of varieties has provided opportunities to inspect the genetic and genomic changes reflecting the history of breeding, which we consider as breeding signatures and the selected loci may provide targets for crop improvement. Our study also reports enhanced diversity in both desi and kabuli varieties as a result of recent chickpea breeding efforts. The current study will aid the explicit efforts to breed for local adaptation in the context of anticipated climate changes.


Assuntos
Cruzamento , Cicer/genética , Variação Genética , Adaptação Fisiológica/genética , Agricultura , Resistência à Doença/genética , Secas , Genética Populacional , Genoma de Planta , Haplótipos/genética , Mutação INDEL/genética , Desequilíbrio de Ligação/genética , Doenças das Plantas/genética , Polimorfismo de Nucleotídeo Único/genética , Característica Quantitativa Herdável , Seleção Genética , Fatores de Tempo
11.
Proc Natl Acad Sci U S A ; 113(24): 6785-90, 2016 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-27247390

RESUMO

Peanut or groundnut (Arachis hypogaea L.), a legume of South American origin, has high seed oil content (45-56%) and is a staple crop in semiarid tropical and subtropical regions, partially because of drought tolerance conferred by its geocarpic reproductive strategy. We present a draft genome of the peanut A-genome progenitor, Arachis duranensis, and 50,324 protein-coding gene models. Patterns of gene duplication suggest the peanut lineage has been affected by at least three polyploidizations since the origin of eudicots. Resequencing of synthetic Arachis tetraploids reveals extensive gene conversion in only three seed-to-seed generations since their formation by human hands, indicating that this process begins virtually immediately following polyploid formation. Expansion of some specific gene families suggests roles in the unusual subterranean fructification of Arachis For example, the S1Fa-like transcription factor family has 126 Arachis members, in contrast to no more than five members in other examined plant species, and is more highly expressed in roots and etiolated seedlings than green leaves. The A. duranensis genome provides a major source of candidate genes for fructification, oil biosynthesis, and allergens, expanding knowledge of understudied areas of plant biology and human health impacts of plants, informing peanut genetic improvement and aiding deeper sequencing of Arachis diversity.


Assuntos
Arachis , Genoma de Planta/fisiologia , Família Multigênica/fisiologia , Óleos de Plantas/metabolismo , Proteínas de Plantas , Tetraploidia , Arachis/genética , Arachis/metabolismo , Humanos , Óleo de Amendoim , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
12.
Plant Biotechnol J ; 14(7): 1563-77, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-26800652

RESUMO

APETALA2/ethylene response factor (AP2/ERF) and heat-shock protein 90 (HSP90) are two significant classes of transcription factor and molecular chaperone proteins which are known to be implicated under abiotic and biotic stresses. Comprehensive survey identified a total of 147 AP2/ERF genes in chickpea, 176 in pigeonpea, 131 in Medicago, 179 in common bean and 140 in Lotus, whereas the number of HSP90 genes ranged from 5 to 7 in five legumes. Sequence alignment and phylogenetic analyses distinguished AP2, ERF, DREB, RAV and soloist proteins, while HSP90 proteins segregated on the basis of their cellular localization. Deeper insights into the gene structure allowed ERF proteins to be classified into AP2s based on DNA-binding domains, intron arrangements and phylogenetic grouping. RNA-seq and quantitative real-time PCR (qRT-PCR) analyses in heat-stressed chickpea as well as Fusarium wilt (FW)- and sterility mosaic disease (SMD)-stressed pigeonpea provided insights into the modus operandi of AP2/ERF and HSP90 genes. This study identified potential candidate genes in response to heat stress in chickpea while for FW and SMD stresses in pigeonpea. For instance, two DREB genes (Ca_02170 and Ca_16631) and three HSP90 genes (Ca_23016, Ca_09743 and Ca_25602) in chickpea can be targeted as potential candidate genes. Similarly, in pigeonpea, a HSP90 gene, C.cajan_27949, was highly responsive to SMD in the resistant genotype ICPL 20096, can be recommended for further functional validation. Also, two DREB genes, C.cajan_41905 and C.cajan_41951, were identified as leads for further investigation in response to FW stress in pigeonpea.


Assuntos
Fabaceae/genética , Genoma de Planta , Proteínas de Choque Térmico HSP90/genética , Proteínas de Plantas/genética , Fatores de Transcrição/genética , Cajanus/genética , Cicer/genética , Análise por Conglomerados , Perfilação da Expressão Gênica , Proteínas de Choque Térmico HSP90/química , Proteínas de Choque Térmico HSP90/metabolismo , Família Multigênica , Filogenia , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , Alinhamento de Sequência , Análise de Sequência de DNA , Estresse Fisiológico , Fatores de Transcrição/química , Fatores de Transcrição/metabolismo
13.
Sci Rep ; 5: 15296, 2015 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-26478518

RESUMO

A combination of two approaches, namely QTL analysis and gene enrichment analysis were used to identify candidate genes in the "QTL-hotspot" region for drought tolerance present on the Ca4 pseudomolecule in chickpea. In the first approach, a high-density bin map was developed using 53,223 single nucleotide polymorphisms (SNPs) identified in the recombinant inbred line (RIL) population of ICC 4958 (drought tolerant) and ICC 1882 (drought sensitive) cross. QTL analysis using recombination bins as markers along with the phenotyping data for 17 drought tolerance related traits obtained over 1-5 seasons and 1-5 locations split the "QTL-hotspot" region into two subregions namely "QTL-hotspot_a" (15 genes) and "QTL-hotspot_b" (11 genes). In the second approach, gene enrichment analysis using significant marker trait associations based on SNPs from the Ca4 pseudomolecule with the above mentioned phenotyping data, and the candidate genes from the refined "QTL-hotspot" region showed enrichment for 23 genes. Twelve genes were found common in both approaches. Functional validation using quantitative real-time PCR (qRT-PCR) indicated four promising candidate genes having functional implications on the effect of "QTL-hotspot" for drought tolerance in chickpea.


Assuntos
Adaptação Biológica/genética , Cicer/genética , Cicer/metabolismo , Secas , Genes de Plantas , Locos de Características Quantitativas , Estresse Fisiológico/genética , Pontos de Quebra do Cromossomo , Mapeamento Cromossômico , Regulação da Expressão Gênica de Plantas , Ligação Genética , Genoma de Planta , Estudo de Associação Genômica Ampla , Genômica , Genótipo , Sequenciamento de Nucleotídeos em Larga Escala , Endogamia , Polimorfismo de Nucleotídeo Único , Característica Quantitativa Herdável , Recombinação Genética , Reprodutibilidade dos Testes
14.
PLoS One ; 10(10): e0139868, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26460497

RESUMO

Rapid popularity and adaptation of next generation sequencing (NGS) approaches have generated huge volumes of data. High throughput platforms like Illumina HiSeq produce terabytes of raw data that requires quick processing. Quality control of the data is an important component prior to the downstream analyses. To address these issues, we have developed a quality control pipeline, NGS-QCbox that scales up to process hundreds or thousands of samples. Raspberry is an in-house tool, developed in C language utilizing HTSlib (v1.2.1) (http://htslib.org), for computing read/base level statistics. It can be used as stand-alone application and can process both compressed and uncompressed FASTQ format files. NGS-QCbox integrates Raspberry with other open-source tools for alignment (Bowtie2), SNP calling (SAMtools) and other utilities (bedtools) towards analyzing raw NGS data at higher efficiency and in high-throughput manner. The pipeline implements batch processing of jobs using Bpipe (https://github.com/ssadedin/bpipe) in parallel and internally, a fine grained task parallelization utilizing OpenMP. It reports read and base statistics along with genome coverage and variants in a user friendly format. The pipeline developed presents a simple menu driven interface and can be used in either quick or complete mode. In addition, the pipeline in quick mode outperforms in speed against other similar existing QC pipeline/tools. The NGS-QCbox pipeline, Raspberry tool and associated scripts are made available at the URL https://github.com/CEG-ICRISAT/NGS-QCbox and https://github.com/CEG-ICRISAT/Raspberry for rapid quality control analysis of large-scale next generation sequencing (Illumina) data.


Assuntos
Sequenciamento de Nucleotídeos em Larga Escala/instrumentação , Internet , Alinhamento de Sequência/instrumentação , Alinhamento de Sequência/métodos , Software , Sequenciamento de Nucleotídeos em Larga Escala/métodos
15.
Artigo em Inglês | MEDLINE | ID: mdl-26289427

RESUMO

Molecular markers are valuable tools for breeders to help accelerate crop improvement. High throughput sequencing technologies facilitate the discovery of large-scale variations such as single nucleotide polymorphisms (SNPs) and simple sequence repeats (SSRs). Sequencing of chickpea genome along with re-sequencing of several chickpea lines has enabled the discovery of 4.4 million variations including SNPs and InDels. Here we report a repository of 1.9 million variations (SNPs and InDels) anchored on eight pseudomolecules in a custom database, referred as CicArVarDB that can be accessed at http://cicarvardb.icrisat.org/. It includes an easy interface for users to select variations around specific regions associated with quantitative trait loci, with embedded webBLAST search and JBrowse visualisation. We hope that this database will be immensely useful for the chickpea research community for both advancing genetics research as well as breeding applications for crop improvement. Database URL: http://cicarvardb.icrisat.org.


Assuntos
Cicer/genética , Produtos Agrícolas/genética , Bases de Dados de Ácidos Nucleicos , Mutação INDEL , Melhoramento Vegetal , Polimorfismo de Nucleotídeo Único , Locos de Características Quantitativas , Análise de Sequência de DNA/instrumentação , Análise de Sequência de DNA/métodos
16.
BMC Bioinformatics ; 15: 212, 2014 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-24952649

RESUMO

BACKGROUND: Chickpea (Cicer arietinum) is a widely grown legume crop in tropical, sub-tropical and temperate regions. Molecular breeding approaches seem to be essential for enhancing crop productivity in chickpea. Until recently, limited numbers of molecular markers were available in the case of chickpea for use in molecular breeding. However, the recent advances in genomics facilitated the development of large scale markers especially SSRs (simple sequence repeats), the markers of choice in any breeding program. Availability of genome sequence very recently opens new avenues for accelerating molecular breeding approaches for chickpea improvement. DESCRIPTION: In order to assist genetic studies and breeding applications, we have developed a user friendly relational database named the Chickpea Microsatellite Database (CicArMiSatDB http://cicarmisatdb.icrisat.org). This database provides detailed information on SSRs along with their features in the genome. SSRs have been classified and made accessible through an easy-to-use web interface. CONCLUSIONS: This database is expected to help chickpea community in particular and legume community in general, to select SSRs of particular type or from a specific region in the genome to advance both basic genomics research as well as applied aspects of crop improvement.


Assuntos
Cicer/genética , Bases de Dados Genéticas , Genômica/métodos , Repetições de Microssatélites/genética , Sequência de Bases , Cruzamento , Mapeamento Cromossômico , Internet , Interface Usuário-Computador
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA