Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Cell Rep ; 43(4): 114080, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38581677

RESUMO

Midbrain dopamine neurons are thought to play key roles in learning by conveying the difference between expected and actual outcomes. Recent evidence suggests diversity in dopamine signaling, yet it remains poorly understood how heterogeneous signals might be organized to facilitate the role of downstream circuits mediating distinct aspects of behavior. Here, we investigated the organizational logic of dopaminergic signaling by recording and labeling individual midbrain dopamine neurons during associative behavior. Our findings show that reward information and behavioral parameters are not only heterogeneously encoded but also differentially distributed across populations of dopamine neurons. Retrograde tracing and fiber photometry suggest that populations of dopamine neurons projecting to different striatal regions convey distinct signals. These data, supported by computational modeling, indicate that such distributional coding can maximize dynamic range and tailor dopamine signals to facilitate specialized roles of different striatal regions.


Assuntos
Neurônios Dopaminérgicos , Mesencéfalo , Neurônios Dopaminérgicos/fisiologia , Neurônios Dopaminérgicos/metabolismo , Animais , Mesencéfalo/fisiologia , Mesencéfalo/citologia , Masculino , Camundongos , Recompensa , Dopamina/metabolismo , Aprendizagem por Associação/fisiologia , Camundongos Endogâmicos C57BL
2.
Nat Commun ; 13(1): 1296, 2022 03 11.
Artigo em Inglês | MEDLINE | ID: mdl-35277506

RESUMO

Dopamine-dependent long-term plasticity is believed to be a cellular mechanism underlying reinforcement learning. In response to reward and reward-predicting cues, phasic dopamine activity potentiates the efficacy of corticostriatal synapses on spiny projection neurons (SPNs). Since phasic dopamine activity also encodes other behavioural variables, it is unclear how postsynaptic neurons identify which dopamine event is to induce long-term plasticity. Additionally, it is unknown how phasic dopamine released from arborised axons can potentiate targeted striatal synapses through volume transmission. To examine these questions we manipulated striatal cholinergic interneurons (ChIs) and dopamine neurons independently in two distinct in vivo paradigms. We report that long-term potentiation (LTP) at corticostriatal synapses with SPNs is dependent on the coincidence of pauses in ChIs and phasic dopamine activation, critically accompanied by SPN depolarisation. Thus, the ChI pause defines the time window for phasic dopamine to induce plasticity, while depolarisation of SPNs constrains the synapses eligible for plasticity.


Assuntos
Corpo Estriado , Dopamina , Colinérgicos , Neurônios Colinérgicos/fisiologia , Corpo Estriado/fisiologia , Dopamina/fisiologia , Neurônios Dopaminérgicos , Interneurônios/fisiologia , Plasticidade Neuronal/fisiologia , Sinapses/fisiologia
3.
Proc Natl Acad Sci U S A ; 113(15): E2180-8, 2016 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-27001837

RESUMO

Midbrain dopaminergic neurons are essential for appropriate voluntary movement, as epitomized by the cardinal motor impairments arising in Parkinson's disease. Understanding the basis of such motor control requires understanding how the firing of different types of dopaminergic neuron relates to movement and how this activity is deciphered in target structures such as the striatum. By recording and labeling individual neurons in behaving mice, we show that the representation of brief spontaneous movements in the firing of identified midbrain dopaminergic neurons is cell-type selective. Most dopaminergic neurons in the substantia nigra pars compacta (SNc), but not in ventral tegmental area or substantia nigra pars lateralis, consistently represented the onset of spontaneous movements with a pause in their firing. Computational modeling revealed that the movement-related firing of these dopaminergic neurons can manifest as rapid and robust fluctuations in striatal dopamine concentration and receptor activity. The exact nature of the movement-related signaling in the striatum depended on the type of dopaminergic neuron providing inputs, the striatal region innervated, and the type of dopamine receptor expressed by striatal neurons. Importantly, in aged mice harboring a genetic burden relevant for human Parkinson's disease, the precise movement-related firing of SNc dopaminergic neurons and the resultant striatal dopamine signaling were lost. These data show that distinct dopaminergic cell types differentially encode spontaneous movement and elucidate how dysregulation of their firing in early Parkinsonism can impair their effector circuits.


Assuntos
Neurônios Dopaminérgicos/fisiologia , Movimento/fisiologia , Transtornos Parkinsonianos/fisiopatologia , Animais , Corpo Estriado/fisiologia , Dopamina/fisiologia , Masculino , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Modelos Biológicos , Substância Negra/fisiologia , Área Tegmentar Ventral/fisiologia , alfa-Sinucleína/genética
4.
Hum Mol Genet ; 25(5): 951-63, 2016 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-26744332

RESUMO

Mutations in leucine-rich repeat kinase 2 (LRRK2) lead to late-onset, autosomal dominant Parkinson's disease, characterized by the degeneration of dopamine neurons of the substantia nigra pars compacta, a deficit in dopamine neurotransmission and the development of motor and non-motor symptoms. The most prevalent Parkinson's disease LRRK2 mutations are located in the kinase (G2019S) and GTPase (R1441C) encoding domains of LRRK2. To better understand the sequence of events that lead to progressive neurophysiological deficits in vulnerable neurons and circuits in Parkinson's disease, we have generated LRRK2 bacterial artificial chromosome transgenic rats expressing either G2019S or R1441C mutant, or wild-type LRRK2, from the complete human LRRK2 genomic locus, including endogenous promoter and regulatory regions. Aged (18-21 months) G2019S and R1441C mutant transgenic rats exhibit L-DOPA-responsive motor dysfunction, impaired striatal dopamine release as determined by fast-scan cyclic voltammetry, and cognitive deficits. In addition, in vivo recordings of identified substantia nigra pars compacta dopamine neurons in R1441C LRRK2 transgenic rats reveal an age-dependent reduction in burst firing, which likely results in further reductions to striatal dopamine release. These alterations to dopamine circuit function occur in the absence of neurodegeneration or abnormal protein accumulation within the substantia nigra pars compacta, suggesting that nigrostriatal dopamine dysfunction precedes detectable protein aggregation and cell death in the development of Parkinson's disease. In conclusion, our longitudinal deep-phenotyping provides novel insights into how the genetic burden arising from human mutant LRRK2 manifests as early pathophysiological changes to dopamine circuit function and highlights a potential model for testing Parkinson's therapeutics.


Assuntos
Envelhecimento/metabolismo , Antiparkinsonianos/farmacologia , Neurônios Dopaminérgicos/efeitos dos fármacos , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina/genética , Levodopa/farmacologia , Mutação , Doença de Parkinson/genética , Potenciais de Ação , Envelhecimento/patologia , Substituição de Aminoácidos , Animais , Morte Celular/genética , Cromossomos Artificiais Bacterianos/química , Cromossomos Artificiais Bacterianos/metabolismo , Corpo Estriado/efeitos dos fármacos , Corpo Estriado/metabolismo , Corpo Estriado/patologia , Modelos Animais de Doenças , Neurônios Dopaminérgicos/metabolismo , Neurônios Dopaminérgicos/patologia , Feminino , Humanos , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina/metabolismo , Masculino , Doença de Parkinson/tratamento farmacológico , Doença de Parkinson/metabolismo , Doença de Parkinson/patologia , Regiões Promotoras Genéticas , Domínios Proteicos , Ratos , Ratos Transgênicos , Substância Negra/efeitos dos fármacos , Substância Negra/metabolismo , Substância Negra/patologia
5.
Neuron ; 87(6): 1290-1303, 2015 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-26402610

RESUMO

The dynamic interactions between hippocampus and amygdala are critical for emotional memory. Theta synchrony between these structures occurs during fear memory retrieval and may facilitate synaptic plasticity, but the cellular mechanisms are unknown. We report that interneurons of the mouse basal amygdala are activated during theta network activity or optogenetic stimulation of ventral CA1 pyramidal cell axons, whereas principal neurons are inhibited. Interneurons provide feedforward inhibition that transiently hyperpolarizes principal neurons. However, synaptic inhibition attenuates during theta frequency stimulation of ventral CA1 fibers, and this broadens excitatory postsynaptic potentials. These effects are mediated by GABAB receptors and change in the Cl(-) driving force. Pairing theta frequency stimulation of ventral CA1 fibers with coincident stimuli of the lateral amygdala induces long-term potentiation of lateral-basal amygdala excitatory synapses. Hence, feedforward inhibition, known to enforce temporal fidelity of excitatory inputs, dominates hippocampus-amygdala interactions to gate heterosynaptic plasticity. VIDEO ABSTRACT.


Assuntos
Tonsila do Cerebelo/fisiologia , Hipocampo/fisiologia , Inibição Neural/fisiologia , Plasticidade Neuronal/fisiologia , Sinapses/fisiologia , Ritmo Teta/fisiologia , Tonsila do Cerebelo/ultraestrutura , Animais , Hipocampo/ultraestrutura , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Sinapses/ultraestrutura
6.
Proc Natl Acad Sci U S A ; 112(35): E4929-38, 2015 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-26283356

RESUMO

Midbrain dopaminergic (mDA) neurons are implicated in cognitive functions, neuropsychiatric disorders, and pathological conditions; hence understanding genes regulating their homeostasis has medical relevance. Transcription factors FOXA1 and FOXA2 (FOXA1/2) are key determinants of mDA neuronal identity during development, but their roles in adult mDA neurons are unknown. We used a conditional knockout strategy to specifically ablate FOXA1/2 in mDA neurons of adult mice. We show that deletion of Foxa1/2 results in down-regulation of tyrosine hydroxylase, the rate-limiting enzyme of dopamine (DA) biosynthesis, specifically in dopaminergic neurons of the substantia nigra pars compacta (SNc). In addition, DA synthesis and striatal DA transmission were reduced after Foxa1/2 deletion. Furthermore, the burst-firing activity characteristic of SNc mDA neurons was drastically reduced in the absence of FOXA1/2. These molecular and functional alterations lead to a severe feeding deficit in adult Foxa1/2 mutant mice, independently of motor control, which could be rescued by L-DOPA treatment. FOXA1/2 therefore control the maintenance of molecular and physiological properties of SNc mDA neurons and impact on feeding behavior in adult mice.


Assuntos
Dopamina/metabolismo , Comportamento Alimentar , Fator 3-alfa Nuclear de Hepatócito/fisiologia , Fator 3-beta Nuclear de Hepatócito/fisiologia , Neurônios/metabolismo , Animais , Encéfalo/citologia , Encéfalo/metabolismo , Deleção de Genes , Fator 3-alfa Nuclear de Hepatócito/genética , Fator 3-beta Nuclear de Hepatócito/genética , Camundongos , Camundongos Knockout , Neurônios/citologia , RNA Mensageiro/genética
7.
J Neurosci ; 35(17): 6667-88, 2015 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-25926446

RESUMO

Studies in dopamine-depleted rats indicate that the external globus pallidus (GPe) contains two main types of GABAergic projection cell; so-called "prototypic" and "arkypallidal" neurons. Here, we used correlative anatomical and electrophysiological approaches in rats to determine whether and how this dichotomous organization applies to the dopamine-intact GPe. Prototypic neurons coexpressed the transcription factors Nkx2-1 and Lhx6, comprised approximately two-thirds of all GPe neurons, and were the major GPe cell type innervating the subthalamic nucleus (STN). In contrast, arkypallidal neurons expressed the transcription factor FoxP2, constituted just over one-fourth of GPe neurons, and innervated the striatum but not STN. In anesthetized dopamine-intact rats, molecularly identified prototypic neurons fired at relatively high rates and with high regularity, regardless of brain state (slow-wave activity or spontaneous activation). On average, arkypallidal neurons fired at lower rates and regularities than prototypic neurons, and the two cell types could be further distinguished by the temporal coupling of their firing to ongoing cortical oscillations. Complementing the activity differences observed in vivo, the autonomous firing of identified arkypallidal neurons in vitro was slower and more variable than that of prototypic neurons, which tallied with arkypallidal neurons displaying lower amplitudes of a "persistent" sodium current important for such pacemaking. Arkypallidal neurons also exhibited weaker driven and rebound firing compared with prototypic neurons. In conclusion, our data support the concept that a dichotomous functional organization, as actioned by arkypallidal and prototypic neurons with specialized molecular, structural, and physiological properties, is fundamental to the operations of the dopamine-intact GPe.


Assuntos
Dopamina/metabolismo , Globo Pálido/citologia , Vias Neurais/fisiologia , Neurônios/fisiologia , Núcleo Subtalâmico/citologia , Potenciais de Ação/genética , Potenciais de Ação/fisiologia , Adrenérgicos/toxicidade , Animais , Animais Recém-Nascidos , Proteínas ELAV/metabolismo , Proteína Semelhante a ELAV 3 , Feminino , Fatores de Transcrição Forkhead/metabolismo , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Técnicas In Vitro , Vias Neurais/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Proteínas Nucleares/metabolismo , Oxidopamina/toxicidade , Parvalbuminas/metabolismo , Ratos , Estatísticas não Paramétricas , Fator Nuclear 1 de Tireoide , Fatores de Transcrição/metabolismo
8.
Neuron ; 86(2): 501-13, 2015 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-25843402

RESUMO

Transcriptional codes initiated during brain development are ultimately realized in adulthood as distinct cell types performing specialized roles in behavior. Focusing on the mouse external globus pallidus (GPe), we demonstrate that the potential contributions of two GABAergic GPe cell types to voluntary action are fated from early life to be distinct. Prototypic GPe neurons derive from the medial ganglionic eminence of the embryonic subpallium and express the transcription factor Nkx2-1. These neurons fire at high rates during alert rest, and encode movements through heterogeneous firing rate changes, with many neurons decreasing their activity. In contrast, arkypallidal GPe neurons originate from lateral/caudal ganglionic eminences, express the transcription factor FoxP2, fire at low rates during rest, and encode movements with robust increases in firing. We conclude that developmental diversity positions prototypic and arkypallidal neurons to fulfil distinct roles in behavior via their disparate regulation of GABA release onto different basal ganglia targets.


Assuntos
Fatores de Transcrição Forkhead/metabolismo , Globo Pálido/citologia , Globo Pálido/crescimento & desenvolvimento , Movimento/fisiologia , Neurônios/classificação , Neurônios/metabolismo , Proteínas Nucleares/metabolismo , Proteínas Repressoras/metabolismo , Fatores de Transcrição/metabolismo , Potenciais de Ação/fisiologia , Animais , Linhagem da Célula/fisiologia , Encefalinas/metabolismo , Globo Pálido/embriologia , Camundongos , Precursores de Proteínas/metabolismo , Curva ROC , Fator Nuclear 1 de Tireoide , Ácido gama-Aminobutírico/metabolismo
9.
Proc Natl Acad Sci U S A ; 110(42): E4016-25, 2013 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-24082145

RESUMO

The pathological end-state of Parkinson disease is well described from postmortem tissue, but there remains a pressing need to define early functional changes to susceptible neurons and circuits. In particular, mechanisms underlying the vulnerability of the dopamine neurons of the substantia nigra pars compacta (SNc) and the importance of protein aggregation in driving the disease process remain to be determined. To better understand the sequence of events occurring in familial and sporadic Parkinson disease, we generated bacterial artificial chromosome transgenic mice (SNCA-OVX) that express wild-type α-synuclein from the complete human SNCA locus at disease-relevant levels and display a transgene expression profile that recapitulates that of endogenous α-synuclein. SNCA-OVX mice display age-dependent loss of nigrostriatal dopamine neurons and motor impairments characteristic of Parkinson disease. This phenotype is preceded by early deficits in dopamine release from terminals in the dorsal, but not ventral, striatum. Such neurotransmission deficits are not seen at either noradrenergic or serotoninergic terminals. Dopamine release deficits are associated with an altered distribution of vesicles in dopaminergic axons in the dorsal striatum. Aged SNCA-OVX mice exhibit reduced firing of SNc dopamine neurons in vivo measured by juxtacellular recording of neurochemically identified neurons. These progressive changes in vulnerable SNc neurons were observed independently of overt protein aggregation, suggesting neurophysiological changes precede, and are not driven by, aggregate formation. This longitudinal phenotyping strategy in SNCA-OVX mice thus provides insights into the region-specific neuronal disturbances preceding and accompanying Parkinson disease.


Assuntos
Envelhecimento/metabolismo , Corpo Estriado/metabolismo , Neurônios Dopaminérgicos/metabolismo , Transtornos Parkinsonianos/metabolismo , Substância Negra/metabolismo , Transmissão Sináptica , Envelhecimento/patologia , Animais , Cromossomos Artificiais Bacterianos/genética , Cromossomos Artificiais Bacterianos/metabolismo , Corpo Estriado/patologia , Corpo Estriado/fisiopatologia , Neurônios Dopaminérgicos/patologia , Humanos , Camundongos , Transtornos Parkinsonianos/genética , Transtornos Parkinsonianos/patologia , Transtornos Parkinsonianos/fisiopatologia , Substância Negra/patologia , Substância Negra/fisiopatologia , alfa-Sinucleína/biossíntese , alfa-Sinucleína/genética
10.
J Physiol ; 589(Pt 12): 2993-3008, 2011 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-21502290

RESUMO

The membrane potential dynamics of stellate neurons in layer II of the medial entorhinal cortex are important for neural encoding of location. Previous studies suggest that these neurons generate intrinsic theta-frequency membrane potential oscillations, with a period that depends on neuronal location on the dorsal­ventral axis of themedial entorhinal cortex, and which in behaving animals could support generation of grid-like spatial firing fields. To address the nature and organization of this theta-like activity, we adopt the Lombmethod of least-squares spectral analysis. We demonstrate that peaks in frequency spectra that differ significantly from Gaussian noise do not necessarily imply the existence of a periodic oscillator, but can instead arise from filtered stochastic noise or a stochastic random walk. We show that theta-like membrane potential activity recorded fromstellate neurons in mature brain slices is consistentwith stochastic mechanisms, but not with generation by a periodic oscillator. The dorsal­ventral organization of intrinsic theta-likemembrane potential activity, and themodification of this activity during block of HCN channels, both reflect altered frequency distributions of stochastic spectral peaks, rather than tuning of a periodic oscillator. Our results demonstrate the importance of distinguishing periodic oscillations from stochastic processes.We suggest that dorsal­ventral tuning of theta-like membrane potential activity is due to differences in stochastic current fluctuations resulting from organization of ion channels that also control synaptic integration.


Assuntos
Relógios Biológicos/fisiologia , Córtex Entorrinal/fisiologia , Modelos Neurológicos , Rede Nervosa/fisiologia , Neurônios/fisiologia , Gânglio Estrelado/fisiologia , Animais , Células Cultivadas , Simulação por Computador , Camundongos , Processos Estocásticos
11.
Neuron ; 60(5): 875-89, 2008 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-19081381

RESUMO

Neurons important for cognitive function are often classified by their morphology and integrative properties. However, it is unclear if within a single class of neuron these properties tune synaptic responses to the salient features of the information that each neuron represents. We demonstrate that for stellate neurons in layer II of the medial entorhinal cortex, the waveform of postsynaptic potentials, the time window for detection of coincident inputs, and responsiveness to gamma frequency inputs follow a dorsal-ventral gradient similar to the topographical organization of grid-like spatial firing fields of neurons in this area. We provide evidence that these differences are due to a membrane conductance gradient mediated by HCN and leak potassium channels. These findings suggest key roles for synaptic integration in computations carried out within the medial entorhinal cortex and imply that tuning of neural information processing by membrane ion channels is important for normal cognitive function.


Assuntos
Córtex Entorrinal/citologia , Córtex Entorrinal/fisiologia , Potenciais Pós-Sinápticos Excitadores/fisiologia , Neurônios/fisiologia , Sinapses/fisiologia , Animais , Compostos de Bário/farmacologia , Mapeamento Encefálico , Tamanho Celular , Césio/farmacologia , Cloretos/farmacologia , Canais de Cátion Regulados por Nucleotídeos Cíclicos/antagonistas & inibidores , Estimulação Elétrica/métodos , Potenciais Pós-Sinápticos Excitadores/efeitos dos fármacos , Técnicas In Vitro , Ativação do Canal Iônico/efeitos dos fármacos , Ativação do Canal Iônico/fisiologia , Camundongos , Antagonistas Muscarínicos/farmacologia , Neurônios/classificação , Técnicas de Patch-Clamp , Pirimidinas/farmacologia , Quinidina/farmacologia
12.
J Neurosci ; 27(46): 12440-51, 2007 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-18003822

RESUMO

Whereas recent studies have elucidated principles for representation of information within the entorhinal cortex, less is known about the molecular basis for information processing by entorhinal neurons. The HCN1 gene encodes ion channels that mediate hyperpolarization-activated currents (I(h)) that control synaptic integration and influence several forms of learning and memory. We asked whether hyperpolarization-activated, cation nonselective 1 (HCN1) channels control processing of information by stellate cells found within layer II of the entorhinal cortex. Axonal projections from these neurons form a major component of the synaptic input to the dentate gyrus of the hippocampus. To determine whether HCN1 channels control either the resting or the active properties of stellate neurons, we performed whole-cell recordings in horizontal brain slices prepared from adult wild-type and HCN1 knock-out mice. We found that HCN1 channels are required for rapid and full activation of hyperpolarization-activated currents in stellate neurons. HCN1 channels dominate the membrane conductance at rest, are not required for theta frequency (4-12 Hz) membrane potential fluctuations, but suppress low-frequency (<4 Hz) components of spontaneous and evoked membrane potential activity. During sustained activation of stellate cells sufficient for firing of repeated action potentials, HCN1 channels control the pattern of spike output by promoting recovery of the spike afterhyperpolarization. These data suggest that HCN1 channels expressed by stellate neurons in layer II of the entorhinal cortex are key molecular components in the processing of inputs to the hippocampal dentate gyrus, with distinct integrative roles during resting and active states.


Assuntos
Canais de Cátion Regulados por Nucleotídeos Cíclicos/metabolismo , Córtex Entorrinal/metabolismo , Vias Neurais/metabolismo , Neurônios/metabolismo , Canais de Potássio/metabolismo , Transmissão Sináptica/genética , Potenciais de Ação/efeitos dos fármacos , Potenciais de Ação/genética , Animais , Canais de Cátion Regulados por Nucleotídeos Cíclicos/genética , Giro Denteado/metabolismo , Córtex Entorrinal/citologia , Feminino , Canais Disparados por Nucleotídeos Cíclicos Ativados por Hiperpolarização , Ativação do Canal Iônico/efeitos dos fármacos , Ativação do Canal Iônico/genética , Masculino , Potenciais da Membrana/efeitos dos fármacos , Potenciais da Membrana/genética , Memória/fisiologia , Camundongos , Camundongos Knockout , Inibição Neural/efeitos dos fármacos , Inibição Neural/genética , Vias Neurais/citologia , Neurônios/citologia , Neurônios/efeitos dos fármacos , Técnicas de Cultura de Órgãos , Técnicas de Patch-Clamp , Canais de Potássio/genética , Membranas Sinápticas/genética , Membranas Sinápticas/metabolismo , Transmissão Sináptica/efeitos dos fármacos , Ritmo Teta/efeitos dos fármacos
13.
Neuropharmacology ; 49(6): 883-9, 2005 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-16212990

RESUMO

Of the five excitatory amino acid transporters (EAATs) identified, two genes are expressed by neurons (EAAT3 and EAAT4) and give rise to transporters confined to neuronal cell bodies and dendrites. At an ultrastructural level, EAAT3 and EAAT4 proteins are clustered at the edges of postsynaptic densities of excitatory synapses. This pattern of localization suggests that postsynaptic EAATs may help to limit spillover of glutamate from excitatory synapses. In an effort to study transporter localization in living neurons and ultimately to manipulate uptake at intact synapses, we have developed viral reagents encoding neuronal EAATs tagged with GFP. We demonstrate that these fusion proteins are capable of Na(+)-dependent glutamate uptake, that they generate ionic conductances indistinguishable from their wild-type counterparts, and that GFP does not alter their glutamate dose-dependence. Two-photon microscopy was used to examine fusion protein expression in Purkinje neurons in acute cerebellar slices. Both EAAT3-GFP and EAAT4-GFP were observed at high levels in the dendritic spines of transfected Purkinje neurons. These findings indicate that functional EAAT fusion proteins can be synthesized and appropriately trafficked to postsynaptic compartments. Furthermore, they validate a powerful system for looking at EAAT function in situ.


Assuntos
Sistema X-AG de Transporte de Aminoácidos/metabolismo , Cerebelo/citologia , Regulação da Expressão Gênica/fisiologia , Ácido Glutâmico/metabolismo , Proteínas de Fluorescência Verde/metabolismo , Células de Purkinje/metabolismo , Sistema X-AG de Transporte de Aminoácidos/classificação , Animais , Animais Recém-Nascidos , Ácido Aspártico/análogos & derivados , Ácido Aspártico/farmacologia , Linhagem Celular , Clonagem Molecular/métodos , Cricetinae , Relação Dose-Resposta a Droga , Humanos , Técnicas In Vitro , Potenciais da Membrana/efeitos dos fármacos , Potenciais da Membrana/fisiologia , Potenciais da Membrana/efeitos da radiação , Microinjeções/métodos , Microscopia de Fluorescência por Excitação Multifotônica/métodos , Oócitos , Técnicas de Patch-Clamp/métodos , Ratos , Sódio/metabolismo , Transfecção/métodos , Trítio/metabolismo , Xenopus
14.
Nat Neurosci ; 8(3): 339-45, 2005 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-15696164

RESUMO

Neuronal mechanisms underlying alcohol intoxication are unclear. We find that alcohol impairs motor coordination by enhancing tonic inhibition mediated by a specific subtype of extrasynaptic GABA(A) receptor (GABAR), alpha6beta3delta, expressed exclusively in cerebellar granule cells. In recombinant studies, we characterize a naturally occurring single-nucleotide polymorphism that causes a single amino acid change (R100Q) in alpha6 (encoded in rats by the Gabra6 gene). We show that this change selectively increases alcohol sensitivity of alpha6beta3delta GABARs. Behavioral and electrophysiological comparisons of Gabra6(100R/100R) and Gabra6(100Q/100Q) rats strongly suggest that alcohol impairs motor coordination by enhancing granule cell tonic inhibition. These findings identify extrasynaptic GABARs as critical targets underlying low-dose alcohol intoxication and demonstrate that subtle changes in tonic inhibition in one class of neurons can alter behavior.


Assuntos
Depressores do Sistema Nervoso Central/farmacologia , Etanol/farmacologia , Inibição Neural/fisiologia , Neurônios/fisiologia , Desempenho Psicomotor/fisiologia , Receptores de GABA-A/fisiologia , Potenciais de Ação/efeitos dos fármacos , Potenciais de Ação/fisiologia , Animais , Animais Recém-Nascidos , Comportamento Animal , Cerebelo/citologia , Relação Dose-Resposta a Droga , Interações Medicamentosas , Genótipo , Técnicas In Vitro , Inibição Neural/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Técnicas de Patch-Clamp/métodos , Polimorfismo de Nucleotídeo Único/fisiologia , Subunidades Proteicas/fisiologia , Desempenho Psicomotor/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley , Receptores de GABA-A/genética , Transfecção/métodos , Xenopus laevis , Ácido gama-Aminobutírico/farmacologia
15.
Trends Neurosci ; 27(4): 210-7, 2004 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-15046880

RESUMO

Potassium channels are crucial regulators of neuronal excitability, setting resting membrane potentials and firing thresholds, repolarizing action potentials and limiting excitability. Although most of our understanding of K+ channels is based on somatic recordings, there is good evidence that these channels are present in synaptic terminals. In recent years the improved access to presynaptic compartments afforded by direct recording techniques has indicated diverse roles for native K+ channels, from suppression of aberrant firing to action potential repolarization and activity-dependent modulation of synaptic activity. This article reviews the growing evidence for multiple roles and discrete localization of distinct K+ channels at presynaptic terminals.


Assuntos
Potenciais da Membrana/fisiologia , Neurônios/metabolismo , Canais de Potássio/metabolismo , Terminações Pré-Sinápticas/metabolismo , Animais , Humanos , Mamíferos , Canais de Potássio/classificação
16.
J Physiol ; 550(Pt 1): 27-33, 2003 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-12777451

RESUMO

Voltage-gated K+ channels activating close to resting membrane potentials are widely expressed and differentially located in axons, presynaptic terminals and cell bodies. There is extensive evidence for localisation of Kv1 subunits at many central synaptic terminals but few clues to their presynaptic function. We have used the calyx of Held to investigate the role of presynaptic Kv1 channels in the rat by selectively blocking Kv1.1 and Kv1.2 containing channels with dendrotoxin-K (DTX-K) and tityustoxin-Kalpha (TsTX-Kalpha) respectively. We show that Kv1.2 homomers are responsible for two-thirds of presynaptic low threshold current, whilst Kv1.1/Kv1.2 heteromers contribute the remaining current. These channels are located in the transition zone between the axon and synaptic terminal, contrasting with the high threshold K+ channel subunit Kv3.1 which is located on the synaptic terminal itself. Kv1 homomers were absent from bushy cell somata (from which the calyx axons arise); instead somatic low threshold channels consisted of heteromers containing Kv1.1, Kv1.2 and Kv1.6 subunits. Current-clamp recording from the calyx showed that each presynaptic action potential (AP) was followed by a depolarising after-potential (DAP) lasting around 50 ms. Kv1.1/Kv1.2 heteromers had little influence on terminal excitability, since DTX-K did not alter AP firing. However TsTX-Kalpha increased DAP amplitude, bringing the terminal closer to threshold for generating an additional AP. Paired pre- and postsynaptic recordings confirmed that this aberrant AP evoked an excitatory postsynaptic current (EPSC). We conclude that Kv1.2 channels have a general presynaptic function in suppressing terminal hyperexcitability during the depolarising after-potential.


Assuntos
Canais de Potássio de Abertura Dependente da Tensão da Membrana , Canais de Potássio/fisiologia , Terminações Pré-Sinápticas/fisiologia , Potenciais de Ação/fisiologia , Animais , Axônios/metabolismo , Tronco Encefálico/citologia , Tronco Encefálico/metabolismo , Canais de Potássio de Retificação Tardia , Condutividade Elétrica , Técnicas In Vitro , Canal de Potássio Kv1.1 , Canal de Potássio Kv1.2 , Canais de Potássio/metabolismo , Terminações Pré-Sinápticas/metabolismo , Ratos , Ratos Endogâmicos , Ratos Wistar
17.
J Neurosci ; 22(16): 6953-61, 2002 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-12177193

RESUMO

Low-threshold voltage-gated potassium currents (I(LT)) activating close to resting membrane potentials play an important role in shaping action potential (AP) firing patterns. In the medial nucleus of the trapezoid body (MNTB), I(LT) ensures generation of single APs during each EPSP, so that the timing and pattern of AP firing is preserved on transmission across this relay synapse (calyx of Held). This temporal information is critical for computation of sound location using interaural timing and level differences. I(LT) currents are generated by dendrotoxin-I-sensitive, Shaker-related K+ channels; our immunohistochemistry confirms that MNTB neurons express Kv1.1, Kv1.2, and Kv1.6 subunits. We used subunit-specific toxins to separate I(LT) into two components, each contributing approximately one-half of the total low-threshold current: (1) I(LTS), a tityustoxin-Kalpha-sensitive current (TsTX) (known to block Kv1.2 containing channels), and (2) I(LTR), an TsTX-resistant current. Both components were sensitive to the Kv1.1-specific toxin dendrotoxin-K and were insensitive to tetraethylammonium (1 mm). This pharmacological profile excludes homomeric Kv1.1 or Kv1.2 channels and is consistent with I(LTS) channels being Kv1.1/Kv1.2 heteromers, whereas I(LTR) channels are probably Kv1.1/Kv1.6 heteromers. Although they have similar kinetic properties, I(LTS) is critical for generating the phenotypic single AP response of MNTB neurons. Immunohistochemistry confirms that Kv1.1 and Kv1.2 (I(LTS) channels), but not Kv1.6, are concentrated in the first 20 microm of MNTB axons. Our results show that heteromeric channels containing Kv1.2 subunits govern AP firing and suggest that their localization at the initial segment of MNTB axons can explain their dominance of AP firing behavior.


Assuntos
Potenciais de Ação/fisiologia , Tronco Encefálico/metabolismo , Canais de Potássio de Abertura Dependente da Tensão da Membrana , Canais de Potássio/metabolismo , Potenciais de Ação/efeitos dos fármacos , Animais , Vias Auditivas/citologia , Vias Auditivas/efeitos dos fármacos , Vias Auditivas/metabolismo , Axônios/efeitos dos fármacos , Axônios/metabolismo , Tronco Encefálico/citologia , Tronco Encefálico/efeitos dos fármacos , Venenos Elapídicos/farmacologia , Imuno-Histoquímica , Técnicas In Vitro , Canal de Potássio Kv1.2 , Neurônios/citologia , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Neurotoxinas/farmacologia , Técnicas de Patch-Clamp , Peptídeos/farmacologia , Bloqueadores dos Canais de Potássio , Subunidades Proteicas , Ratos , Ratos Endogâmicos , Venenos de Escorpião/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA