Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Nature ; 629(8013): 843-850, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38658746

RESUMO

Angiosperms are the cornerstone of most terrestrial ecosystems and human livelihoods1,2. A robust understanding of angiosperm evolution is required to explain their rise to ecological dominance. So far, the angiosperm tree of life has been determined primarily by means of analyses of the plastid genome3,4. Many studies have drawn on this foundational work, such as classification and first insights into angiosperm diversification since their Mesozoic origins5-7. However, the limited and biased sampling of both taxa and genomes undermines confidence in the tree and its implications. Here, we build the tree of life for almost 8,000 (about 60%) angiosperm genera using a standardized set of 353 nuclear genes8. This 15-fold increase in genus-level sampling relative to comparable nuclear studies9 provides a critical test of earlier results and brings notable change to key groups, especially in rosids, while substantiating many previously predicted relationships. Scaling this tree to time using 200 fossils, we discovered that early angiosperm evolution was characterized by high gene tree conflict and explosive diversification, giving rise to more than 80% of extant angiosperm orders. Steady diversification ensued through the remaining Mesozoic Era until rates resurged in the Cenozoic Era, concurrent with decreasing global temperatures and tightly linked with gene tree conflict. Taken together, our extensive sampling combined with advanced phylogenomic methods shows the deep history and full complexity in the evolution of a megadiverse clade.


Assuntos
Evolução Molecular , Genes de Plantas , Genômica , Magnoliopsida , Filogenia , Fósseis , Genes de Plantas/genética , Magnoliopsida/genética , Magnoliopsida/classificação , Proteínas Nucleares/genética
2.
New Phytol ; 239(6): 2353-2366, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37391893

RESUMO

Telomerase, telomeric DNA and associated proteins together represent a complex, finely tuned and functionally conserved mechanism that ensures genome integrity by protecting and maintaining chromosome ends. Changes in its components can threaten an organism's viability. Nevertheless, molecular innovation in telomere maintenance has occurred multiple times during eukaryote evolution, giving rise to species/taxa with unusual telomeric DNA sequences, telomerase components or telomerase-independent telomere maintenance. The central component of telomere maintenance machinery is telomerase RNA (TR) as it templates telomere DNA synthesis, its mutation can change telomere DNA and disrupt its recognition by telomere proteins, thereby leading to collapse of their end-protective and telomerase recruitment functions. Using a combination of bioinformatic and experimental approaches, we examine a plausible scenario of evolutionary changes in TR underlying telomere transitions. We identified plants harbouring multiple TR paralogs whose template regions could support the synthesis of diverse telomeres. In our hypothesis, formation of unusual telomeres is associated with the occurrence of TR paralogs that can accumulate mutations, and through their functional redundancy, allow for the adaptive evolution of the other telomere components. Experimental analyses of telomeres in the examined plants demonstrate evolutionary telomere transitions corresponding to TR paralogs with diverse template regions.


Assuntos
Telomerase , Telomerase/genética , Telomerase/metabolismo , Telômero/genética , RNA/genética , RNA/metabolismo , Plantas/metabolismo
3.
Plants (Basel) ; 12(11)2023 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-37299136

RESUMO

Angiosperm genome sizes (GS) range ~2400-fold and comprise genes and their regulatory regions, repeats, semi-degraded repeats, and 'dark matter'. The latter represents repeats so degraded that they can no longer be recognised as repetitive. In exploring whether the histone modifications associated with chromatin packaging of these contrasting genomic components are conserved across the diversity of GS in angiosperms, we compared immunocytochemistry data for two species whose GS differ ~286-fold. We compared published data for Arabidopsis thaliana with a small genome (GS = 157 Mbp/1C) with newly generated data from Fritillaria imperialis, which has a giant genome (GS = 45,000 Mbp/1C). We compared the distributions of the following histone marks: H3K4me1, H3K4me2, H3K9me1, H3K9me2, H3K9me3, H3K27me1, H3K27me2, and H3K27me3. Assuming these histone marks are associated with the same genomic features across all species, irrespective of GS, our comparative analysis enables us to suggest that while H3K4me1 and H3K4me2 methylation identifies genic DNA, H3K9me3 and H3K27me3 marks are associated with 'dark matter', H3K9me1 and H3K27me1 mark highly homogeneous repeats, and H3K9me2 and H3K27me2 mark semi-degraded repeats. The results have implications for our understanding of epigenetic profiles, chromatin packaging and the divergence of genomes, and highlight contrasting organizations of the chromatin within the nucleus depending on GS itself.

4.
Evolution ; 77(7): 1730-1731, 2023 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-37158004

RESUMO

How have orchid species diversified in the campos rupestres, Brazil? Fiorini et al. (2023) use genomic data sets and multidisciplinary approaches, including phylogenetics and population genomics, to investigate the diversity of Bulbophyllum. They demonstrate that geographic isolation alone does not explain diversification patterns in Bulbophyllum species throughout the sky forests. Some taxa show considerable evidence of gene flow, and lineages not previously identified as closely related could present a novel source of their genetic diversity.


Assuntos
Florestas , Genômica , Filogenia , Brasil
5.
Ann Bot ; 131(1): 123-142, 2023 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-35029647

RESUMO

BACKGROUND AND AIMS: The extent to which genome size and chromosome numbers evolve in concert is little understood, particularly after polyploidy (whole-genome duplication), when a genome returns to a diploid-like condition (diploidization). We study this phenomenon in 46 species of allotetraploid Nicotiana section Suaveolentes (Solanaceae), which formed <6 million years ago and radiated in the arid centre of Australia. METHODS: We analysed newly assessed genome sizes and chromosome numbers within the context of a restriction site-associated nuclear DNA (RADseq) phylogenetic framework. KEY RESULTS: RADseq generated a well-supported phylogenetic tree, in which multiple accessions from each species formed unique genetic clusters. Chromosome numbers and genome sizes vary from n = 2x = 15 to 24 and 2.7 to 5.8 pg/1C nucleus, respectively. Decreases in both genome size and chromosome number occur, although neither consistently nor in parallel. Species with the lowest chromosome numbers (n = 15-18) do not possess the smallest genome sizes and, although N. heterantha has retained the ancestral chromosome complement, n = 2x = 24, it nonetheless has the smallest genome size, even smaller than that of the modern representatives of ancestral diploids. CONCLUSIONS: The results indicate that decreases in genome size and chromosome number occur in parallel down to a chromosome number threshold, n = 20, below which genome size increases, a phenomenon potentially explained by decreasing rates of recombination over fewer chromosomes. We hypothesize that, more generally in plants, major decreases in genome size post-polyploidization take place while chromosome numbers are still high because in these stages elimination of retrotransposons and other repetitive elements is more efficient. Once such major genome size change has been accomplished, then dysploid chromosome reductions take place to reorganize these smaller genomes, producing species with small genomes and low chromosome numbers such as those observed in many annual angiosperms, including Arabidopsis.


Assuntos
Nicotiana , Solanaceae , Nicotiana/genética , Filogenia , Solanaceae/genética , Tamanho do Genoma , Genoma de Planta , Evolução Molecular , Austrália , Poliploidia , Verduras/genética , Cromossomos de Plantas
6.
Front Plant Sci ; 13: 883151, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35860537

RESUMO

Reliably documenting plant diversity is necessary to protect and sustainably benefit from it. At the heart of this documentation lie species concepts and the practical methods used to delimit taxa. Here, we apply a total-evidence, iterative methodology to delimit and document species in the South American genus Victoria (Nymphaeaceae). The systematics of Victoria has thus far been poorly characterized due to difficulty in attributing species identities to biological collections. This research gap stems from an absence of type material and biological collections, also the confused diagnosis of V. cruziana. With the goal of improving systematic knowledge of the genus, we compiled information from historical records, horticulture and geography and assembled a morphological dataset using citizen science and specimens from herbaria and living collections. Finally, we generated genomic data from a subset of these specimens. Morphological and geographical observations suggest four putative species, three of which are supported by nuclear population genomic and plastid phylogenomic inferences. We propose these three confirmed entities as robust species, where two correspond to the currently recognized V. amazonica and V. cruziana, the third being new to science, which we describe, diagnose and name here as V. boliviana Magdalena and L. T. Sm. Importantly, we identify new morphological and molecular characters which serve to distinguish the species and underpin their delimitations. Our study demonstrates how combining different types of character data into a heuristic, total-evidence approach can enhance the reliability with which biological diversity of morphologically challenging groups can be identified, documented and further studied.

7.
New Phytol ; 236(2): 433-446, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35717562

RESUMO

Genome size varies 2400-fold across plants, influencing their evolution through changes in cell size and cell division rates which impact plants' environmental stress tolerance. Repetitive element expansion explains much genome size diversity, and the processes structuring repeat 'communities' are analogous to those structuring ecological communities. However, which environmental stressors influence repeat community dynamics has not yet been examined from an ecological perspective. We measured genome size and leveraged climatic data for 91% of genera within the ecologically diverse palm family (Arecaceae). We then generated genomic repeat profiles for 141 palm species, and analysed repeats using phylogenetically informed linear models to explore relationships between repeat dynamics and environmental factors. We show that palm genome size and repeat 'community' composition are best explained by aridity. Specifically, Ty3-gypsy and TIR elements were more abundant in palm species from wetter environments, which generally had larger genomes, suggesting amplification. By contrast, Ty1-copia and LINE elements were more abundant in drier environments. Our results suggest that water stress inhibits repeat expansion through selection on upper genome size limits. However, elements that may associate with stress-response genes (e.g. Ty1-copia) have amplified in arid-adapted palm species. Overall, we provide novel evidence of climate influencing the assembly of repeat 'communities'.


Assuntos
Arecaceae , Retroelementos , Arecaceae/genética , Evolução Molecular , Tamanho do Genoma , Genoma de Planta , Filogenia , Análise de Sequência de DNA
8.
Plant J ; 111(1): 7-18, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35535507

RESUMO

One of the most commonly encountered and frequently cited laboratory organisms worldwide is classified taxonomically as Nicotiana benthamiana (Solanaceae), an accession of which, typically referred to as LAB, is renowned for its unique susceptibility to a wide range of plant viruses and hence capacity to be transformed using a variety of methods. This susceptibility is the result of an insertion and consequent loss of function in the RNA-dependent RNA polymerase 1 (Rdr1) gene. However, the origin and age of LAB and the evolution of N. benthamiana across its wide distribution in Australia remain relatively underexplored. Here, we have used multispecies coalescent methods on genome-wide single nucleotide polymorphisms (SNPs) to assess species limits, phylogenetic relationships and divergence times within N. benthamiana. Our results show that the previous taxonomic concept of this species in fact comprises five geographically, morphologically and genetically distinct species, one of which includes LAB. We provide clear evidence that LAB is closely related to accessions collected further north in the Northern Territory; this species split much earlier, c. 1.1 million years ago, from their common ancestor than the other four in this clade and is morphologically the most distinctive. We also found that the Rdr1 gene insertion is variable among accessions from the northern portions of the Northern Territory. Furthermore, this long-isolated species typically grows in sheltered sites in subtropical/tropical monsoon areas of northern Australia, contradicting the previously advanced hypothesis that this species is an extremophile that has traded viral resistance for precocious development.


Assuntos
Nicotiana , RNA Polimerase Dependente de RNA , Austrália , Genômica , Filogenia , RNA Polimerase Dependente de RNA/genética , Nicotiana/genética
9.
Am J Bot ; 109(4): 580-601, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35170754

RESUMO

PREMISE: Evolutionary studies require solid phylogenetic frameworks, but increased volumes of phylogenomic data have revealed incongruent topologies among gene trees in many organisms both between and within genomes. Some of these incongruences indicate polytomies that may remain impossible to resolve. Here we investigate the degree of gene-tree discordance in Solanum, one of the largest flowering plant genera that includes the cultivated potato, tomato, and eggplant, as well as 24 minor crop plants. METHODS: A densely sampled species-level phylogeny of Solanum is built using unpublished and publicly available Sanger sequences comprising 60% of all accepted species (742 spp.) and nine regions (ITS, waxy, and seven plastid markers). The robustness of this topology is tested by examining a full plastome dataset with 140 species and a nuclear target-capture dataset with 39 species of Solanum (Angiosperms353 probe set). RESULTS: While the taxonomic framework of Solanum remained stable, gene tree conflicts and discordance between phylogenetic trees generated from the target-capture and plastome datasets were observed. The latter correspond to regions with short internodal branches, and network analysis and polytomy tests suggest the backbone is composed of three polytomies found at different evolutionary depths. The strongest area of discordance, near the crown node of Solanum, could potentially represent a hard polytomy. CONCLUSIONS: We argue that incomplete lineage sorting due to rapid diversification is the most likely cause for these polytomies, and that embracing the uncertainty that underlies them is crucial to understand the evolution of large and rapidly radiating lineages.


Assuntos
Magnoliopsida , Solanum , Filogenia , Plastídeos/genética , Solanum/genética
10.
Syst Biol ; 71(2): 301-319, 2022 02 10.
Artigo em Inglês | MEDLINE | ID: mdl-33983440

RESUMO

The tree of life is the fundamental biological roadmap for navigating the evolution and properties of life on Earth, and yet remains largely unknown. Even angiosperms (flowering plants) are fraught with data gaps, despite their critical role in sustaining terrestrial life. Today, high-throughput sequencing promises to significantly deepen our understanding of evolutionary relationships. Here, we describe a comprehensive phylogenomic platform for exploring the angiosperm tree of life, comprising a set of open tools and data based on the 353 nuclear genes targeted by the universal Angiosperms353 sequence capture probes. The primary goals of this article are to (i) document our methods, (ii) describe our first data release, and (iii) present a novel open data portal, the Kew Tree of Life Explorer (https://treeoflife.kew.org). We aim to generate novel target sequence capture data for all genera of flowering plants, exploiting natural history collections such as herbarium specimens, and augment it with mined public data. Our first data release, described here, is the most extensive nuclear phylogenomic data set for angiosperms to date, comprising 3099 samples validated by DNA barcode and phylogenetic tests, representing all 64 orders, 404 families (96$\%$) and 2333 genera (17$\%$). A "first pass" angiosperm tree of life was inferred from the data, which totaled 824,878 sequences, 489,086,049 base pairs, and 532,260 alignment columns, for interactive presentation in the Kew Tree of Life Explorer. This species tree was generated using methods that were rigorous, yet tractable at our scale of operation. Despite limitations pertaining to taxon and gene sampling, gene recovery, models of sequence evolution and paralogy, the tree strongly supports existing taxonomy, while challenging numerous hypothesized relationships among orders and placing many genera for the first time. The validated data set, species tree and all intermediates are openly accessible via the Kew Tree of Life Explorer and will be updated as further data become available. This major milestone toward a complete tree of life for all flowering plant species opens doors to a highly integrated future for angiosperm phylogenomics through the systematic sequencing of standardized nuclear markers. Our approach has the potential to serve as a much-needed bridge between the growing movement to sequence the genomes of all life on Earth and the vast phylogenomic potential of the world's natural history collections. [Angiosperms; Angiosperms353; genomics; herbariomics; museomics; nuclear phylogenomics; open access; target sequence capture; tree of life.].


Assuntos
Magnoliopsida , Genômica , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Magnoliopsida/genética , Filogenia
12.
Am J Bot ; 108(7): 1166-1180, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34250591

RESUMO

PREMISE: The inference of evolutionary relationships in the species-rich family Orchidaceae has hitherto relied heavily on plastid DNA sequences and limited taxon sampling. Previous studies have provided a robust plastid phylogenetic framework, which was used to classify orchids and investigate the drivers of orchid diversification. However, the extent to which phylogenetic inference based on the plastid genome is congruent with the nuclear genome has been only poorly assessed. METHODS: We inferred higher-level phylogenetic relationships of orchids based on likelihood and ASTRAL analyses of 294 low-copy nuclear genes sequenced using the Angiosperms353 universal probe set for 75 species (representing 69 genera, 16 tribes, 24 subtribes) and a concatenated analysis of 78 plastid genes for 264 species (117 genera, 18 tribes, 28 subtribes). We compared phylogenetic informativeness and support for the nuclear and plastid phylogenetic hypotheses. RESULTS: Phylogenetic inference using nuclear data sets provides well-supported orchid relationships that are highly congruent between analyses. Comparisons of nuclear gene trees and a plastid supermatrix tree showed that the trees are mostly congruent, but revealed instances of strongly supported phylogenetic incongruence in both shallow and deep time. The phylogenetic informativeness of individual Angiosperms353 genes is in general better than that of most plastid genes. CONCLUSIONS: Our study provides the first robust nuclear phylogenomic framework for Orchidaceae and an assessment of intragenomic nuclear discordance, plastid-nuclear tree incongruence, and phylogenetic informativeness across the family. Our results also demonstrate what has long been known but rarely thoroughly documented: nuclear and plastid phylogenetic trees can contain strongly supported discordances, and this incongruence must be reconciled prior to interpretation in evolutionary studies, such as taxonomy, biogeography, and character evolution.


Assuntos
Genomas de Plastídeos , Orchidaceae , Núcleo Celular/genética , Orchidaceae/genética , Filogenia , Plastídeos/genética
15.
Am J Bot ; 108(7): 1087-1111, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34297852

RESUMO

PREMISE: To further advance the understanding of the species-rich, economically and ecologically important angiosperm order Myrtales in the rosid clade, comprising nine families, approximately 400 genera and almost 14,000 species occurring on all continents (except Antarctica), we tested the Angiosperms353 probe kit. METHODS: We combined high-throughput sequencing and target enrichment with the Angiosperms353 probe kit to evaluate a sample of 485 species across 305 genera (76% of all genera in the order). RESULTS: Results provide the most comprehensive phylogenetic hypothesis for the order to date. Relationships at all ranks, such as the relationship of the early-diverging families, often reflect previous studies, but gene conflict is evident, and relationships previously found to be uncertain often remain so. Technical considerations for processing HTS data are also discussed. CONCLUSIONS: High-throughput sequencing and the Angiosperms353 probe kit are powerful tools for phylogenomic analysis, but better understanding of the genetic data available is required to identify genes and gene trees that account for likely incomplete lineage sorting and/or hybridization events.


Assuntos
Magnoliopsida , Myrtales , Núcleo Celular , Magnoliopsida/genética , Filogenia
16.
Mol Biol Evol ; 38(10): 4475-4492, 2021 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-34191029

RESUMO

The date palm, Phoenix dactylifera, has been a cornerstone of Middle Eastern and North African agriculture for millennia. It was first domesticated in the Persian Gulf, and its evolution appears to have been influenced by gene flow from two wild relatives, P. theophrasti, currently restricted to Crete and Turkey, and P. sylvestris, widespread from Bangladesh to the West Himalayas. Genomes of ancient date palm seeds show that gene flow from P. theophrasti to P. dactylifera may have occurred by ∼2,200 years ago, but traces of P. sylvestris could not be detected. We here integrate archeogenomics of a ∼2,100-year-old P. dactylifera leaf from Saqqara (Egypt), molecular-clock dating, and coalescence approaches with population genomic tests, to probe the hybridization between the date palm and its two closest relatives and provide minimum and maximum timestamps for its reticulated evolution. The Saqqara date palm shares a close genetic affinity with North African date palm populations, and we find clear genomic admixture from both P. theophrasti, and P. sylvestris, indicating that both had contributed to the date palm genome by 2,100 years ago. Molecular-clocks placed the divergence of P. theophrasti from P. dactylifera/P. sylvestris and that of P. dactylifera from P. sylvestris in the Upper Miocene, but strongly supported, conflicting topologies point to older gene flow between P. theophrasti and P. dactylifera, and P. sylvestris and P. dactylifera. Our work highlights the ancient hybrid origin of the date palms, and prompts the investigation of the functional significance of genetic material introgressed from both close relatives, which in turn could prove useful for modern date palm breeding.


Assuntos
Phoeniceae , Domesticação , Egito , Phoeniceae/genética , Melhoramento Vegetal , Folhas de Planta/genética
17.
Am J Bot ; 108(7): 1217-1233, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34105148

RESUMO

PREMISE: Speciation not associated with morphological shifts is challenging to detect unless molecular data are employed. Using Sanger-sequencing approaches, the Lomatium packardiae/L. anomalum subcomplex within the larger Lomatium triternatum complex could not be resolved. Therefore, we attempt to resolve these boundaries here. METHODS: The Angiosperms353 probe set was employed to resolve the ambiguity within Lomatium triternatum species complex using 48 accessions assigned to L. packardiae, L. anomalum, or L. triternatum. In addition to exon data, 54 nuclear introns were extracted and were complete for all samples. Three approaches were used to estimate evolutionary relationships and define species boundaries: STACEY, a Bayesian coalescent-based species tree analysis that takes incomplete lineage sorting into account; ASTRAL-III, another coalescent-based species tree analysis; and a concatenated approach using MrBayes. Climatic factors, morphological characters, and soil variables were measured and analyzed to provide additional support for recovered groups. RESULTS: The STACEY analysis recovered three major clades and seven subclades, all of which are geographically structured, and some correspond to previously named taxa. No other analysis had full agreement between recovered clades and other parameters. Climatic niche and leaflet width and length provide some predictive ability for the major clades. CONCLUSIONS: The results suggest that these groups are in the process of incipient speciation and incomplete lineage sorting has been a major barrier to resolving boundaries within this lineage previously. These results are hypothesized through sequencing of multiple loci and analyzing data using coalescent-based processes.


Assuntos
Apiaceae , Teorema de Bayes , Evolução Biológica , Íntrons , Filogenia
18.
Ann Bot ; 128(7): 835-848, 2021 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-34050647

RESUMO

BACKGROUND AND AIMS: With the advance of high-throughput sequencing, reduced-representation methods such as target capture sequencing (TCS) emerged as cost-efficient ways of gathering genomic information, particularly from coding regions. As the off-target reads from such sequencing are expected to be similar to genome skimming (GS), we assessed the quality of repeat characterization in plant genomes using these data. METHODS: Repeat composition obtained from TCS datasets of five Rhynchospora (Cyperaceae) species were compared with GS data from the same taxa. In addition, a FISH probe was designed based on the most abundant satellite found in the TCS dataset of Rhynchospora cephalotes. Finally, repeat-based phylogenies of the five Rhynchospora species were constructed based on the GS and TCS datasets and the topologies were compared with a gene-alignment-based phylogenetic tree. KEY RESULTS: All the major repetitive DNA families were identified in TCS, including repeats that showed abundances as low as 0.01 % in the GS data. Rank correlations between GS and TCS repeat abundances were moderately high (r = 0.58-0.85), increasing after filtering out the targeted loci from the raw TCS reads (r = 0.66-0.92). Repeat data obtained by TCS were also reliable in developing a cytogenetic probe of a new variant of the holocentromeric satellite Tyba. Repeat-based phylogenies from TCS data were congruent with those obtained from GS data and the gene-alignment tree. CONCLUSIONS: Our results show that off-target TCS reads can be recycled to identify repeats for cyto- and phylogenomic investigations. Given the growing availability of TCS reads, driven by global phylogenomic projects, our strategy represents a way to recycle genomic data and contribute to a better characterization of plant biodiversity.


Assuntos
Genoma de Planta , Sequenciamento de Nucleotídeos em Larga Escala , DNA , Genoma de Planta/genética , Filogenia , Análise de Sequência de DNA
19.
Sci Rep ; 11(1): 6858, 2021 03 25.
Artigo em Inglês | MEDLINE | ID: mdl-33767214

RESUMO

Recent phylogenomic analyses based on the maternally inherited plastid organelle have enlightened evolutionary relationships between the subfamilies of Orchidaceae and most of the tribes. However, uncertainty remains within several subtribes and genera for which phylogenetic relationships have not ever been tested in a phylogenomic context. To address these knowledge-gaps, we here provide the most extensively sampled analysis of the orchid family to date, based on 78 plastid coding genes representing 264 species, 117 genera, 18 tribes and 28 subtribes. Divergence times are also provided as inferred from strict and relaxed molecular clocks and birth-death tree models. Our taxon sampling includes 51 newly sequenced plastid genomes produced by a genome skimming approach. We focus our sampling efforts on previously unplaced clades within tribes Cymbidieae and Epidendreae. Our results confirmed phylogenetic relationships in Orchidaceae as recovered in previous studies, most of which were recovered with maximum support (209 of the 262 tree branches). We provide for the first time a clear phylogenetic placement for Codonorchideae within subfamily Orchidoideae, and Podochilieae and Collabieae within subfamily Epidendroideae. We also identify relationships that have been persistently problematic across multiple studies, regardless of the different details of sampling and genomic datasets used for phylogenetic reconstructions. Our study provides an expanded, robust temporal phylogenomic framework of the Orchidaceae that paves the way for biogeographical and macroevolutionary studies.


Assuntos
Biodiversidade , Evolução Molecular , Genomas de Plastídeos , Orchidaceae/genética , Filogenia , Plastídeos/genética , Orchidaceae/classificação
20.
Mol Phylogenet Evol ; 158: 107008, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33160040

RESUMO

Urera Gaudich, s.l. is a pantropical genus comprising c. 35 species of trees, shrubs, and vines. It has a long history of taxonomic uncertainty, and is repeatedly recovered as polyphyletic within a poorly resolved complex of genera in the Urticeae tribe of the nettle family (Urticaceae). To provide generic delimitations concordant with evolutionary history, we use increased taxonomic and genomic sampling to investigate phylogenetic relationships among Urera and associated genera. A cost-effective two-tier genome-sampling approach provides good phylogenetic resolution by using (i) a taxon-dense sample of Sanger sequence data from two barcoding regions to recover clades of putative generic rank, and (ii) a genome-dense sample of target-enrichment data for a subset of representative species from each well-supported clade to resolve relationships among them. The results confirm the polyphyly of Urera s.l. with respect to the morphologically distinct genera Obetia, Poikilospermum and Touchardia. Afrotropic members of Urera s.l. are recovered in a clade sister to the xerophytic African shrubs Obetia; and Hawaiian ones with Touchardia, also from Hawaii. Combined with distinctive morphological differences between Neotropical and African members of Urera s.l., these results lead us to resurrect the previously synonymised name Scepocarpus Wedd. for the latter. The new species epiphet Touchardia oahuensis T.Wells & A.K. Monro is offered as a replacement name for Touchardia glabra non H.St.John, and subgenera are created within Urera s.s. to account for the two morphologically distinct Neotropical clades. This new classification minimises taxonomic and nomenclatural disruption, while more accurately reflecting evolutionary relationships within the group.


Assuntos
DNA de Plantas/química , Urticaceae/classificação , Evolução Biológica , Cloroplastos/classificação , Cloroplastos/genética , DNA de Plantas/isolamento & purificação , DNA de Plantas/metabolismo , DNA Ribossômico/classificação , DNA Ribossômico/genética , Ecossistema , Flores/anatomia & histologia , Flores/classificação , Filogenia , Filogeografia , Análise de Sequência de DNA , Urticaceae/anatomia & histologia , Urticaceae/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA