Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
ACS Chem Neurosci ; 10(10): 4250-4263, 2019 10 16.
Artigo em Inglês | MEDLINE | ID: mdl-31545596

RESUMO

Alzheimer's disease (AD) is the most common form of dementia among the elderly and has become a leading public health concern worldwide. It represents a huge economic and psychological burden to caregivers and families. The presence of extracellular amyloid beta (Aß) plaques is one of the hallmarks of this neurodegenerative disorder. Amyloid plaques are comprised of aggregates of Aß peptides, mainly Aß42, originated by the cleavage of the amyloid precursor protein (APP). Aß is a crucial target for the treatment of AD, but to date, no effective treatment for the clearance of Aß has been found. We have identified four new hexahydropyrroloindoles (HPI) synthetic compounds that are able to inhibit the aggregation of Aß42 and/or disaggregate the fibril. Docking experiments suggest that the nonpolar component of the interaction of compounds with Aß42 contributes favorably to the binding free energy of each complex. Molecular dynamics simulations suggested fibril disaggregating activity of compounds 1 via interaction with hydrophobic moieties of the fibril. Consistently, compounds 1 and 2 were able to mitigate Aß42 fibrils induced death in rat pheochromocytoma cells (PC 12). One of the compounds reduces the formation of Aß aggregates in vivo and the paralysis associated with Aß toxicity in Caenorhabditis elegans. Our study thus augments efforts for the identification and characterization of new agents that may help stop or delay the progression of AD.


Assuntos
Doença de Alzheimer/tratamento farmacológico , Peptídeos beta-Amiloides/metabolismo , Indóis/uso terapêutico , Fragmentos de Peptídeos/metabolismo , Agregados Proteicos/efeitos dos fármacos , Agregação Patológica de Proteínas/tratamento farmacológico , Pirróis/uso terapêutico , Doença de Alzheimer/metabolismo , Animais , Indóis/farmacologia , Células PC12 , Agregação Patológica de Proteínas/metabolismo , Pirróis/farmacologia , Ratos
2.
Biomolecules ; 8(4)2018 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-30301161

RESUMO

The proteasome is an intracellular complex that degrades damaged or unfolded proteins and participates in the regulation of several processes. The immunoproteasome is a specialized form that is expressed in response to proinflammatory signals and is particularly abundant in immune cells. In a previous work, we found an anti-inflammatory effect in a diterpenoid extracted from the octocoral Pseudopterogorgia acerosa, here called compound 1. This compound prevented the degradation of inhibitor κB α (IκBα) and the subsequent activation of nuclear factor κB (NFκB), suggesting that this effect might be due to inhibition of the ubiquitin-proteasome system. Here we show that compound 1 inhibits the proteasomal chymotrypsin-like activity (CTL) of murine macrophages in the presence of lipopolysaccharide (LPS) but not in its absence. This effect might be due to the capacity of this compound to inhibit the activity of purified immunoproteasome. The compound inhibits the cell surface expression of major histocompatibility complex (MHC)-I molecules and the production of proinflammatory cytokines induced by LPS in vitro and in vivo, respectively. Molecular docking simulations predicted that compound 1 selectively binds to the catalytic site of immunoproteasome subunits ß1i and ß5i, which are responsible for the CTL activity. Taken together these findings suggest that the compound could be a selective inhibitor of the immunoproteasome, and hence could pave the way for its future evaluation as a candidate for the treatment of inflammatory disorders and autoimmune diseases.


Assuntos
Diterpenos/farmacologia , Lipopolissacarídeos/farmacologia , Macrófagos/efeitos dos fármacos , Complexo de Endopeptidases do Proteassoma/efeitos dos fármacos , Animais , Quimases/química , Quimases/genética , Humanos , Macrófagos/imunologia , Complexo Principal de Histocompatibilidade/efeitos dos fármacos , Complexo Principal de Histocompatibilidade/imunologia , Camundongos , Simulação de Acoplamento Molecular , Inibidor de NF-kappaB alfa/química , Inibidor de NF-kappaB alfa/genética , NF-kappa B/química , Complexo de Endopeptidases do Proteassoma/química , Complexo de Endopeptidases do Proteassoma/imunologia
3.
Clin Interv Aging ; 12: 815-822, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28553090

RESUMO

Alzheimer's disease (AD) is the leading cause of dementia, affecting approximately 33.5 million people worldwide. Aging is the main risk factor associated with AD. Drug discovery based on nutraceutical molecules for prevention and treatment of AD is a growing topic. In this sense, carotenoids are phytochemicals present mainly in fruits and vegetables with reported benefits for human health. In this research, the anti-amyloidogenic activity of three carotenoids, cryptocapsin, cryptocapsin-5,6-epoxide, and zeaxanthin, was assessed. Cryptocapsin showed the highest bioactivity, while cryptocapsin-5,6-epoxide and zeaxanthin exhibited similar activity on anti-aggregation assays. Molecular modeling analysis revealed that the evaluated carotenoids might follow two mechanisms for inhibiting Aß aggregation: by preventing the formation of the fibril and through disruption of the Aß aggregates. Our studies provided evidence that cryptocapsin, cryptocapsin-5,6-epoxide, and zeaxanthin have anti-amyloidogenic potential and could be used for prevention and treatment of AD.


Assuntos
Doença de Alzheimer/fisiopatologia , Amiloide/efeitos dos fármacos , Carotenoides/farmacologia , Descoberta de Drogas , Humanos , Modelos Moleculares , Zeaxantinas/farmacologia
4.
J Alzheimers Dis ; 60(s1): S59-S68, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28453488

RESUMO

Alzheimer's disease (AD) is the most common neurodegenerative disorder affecting the elderly population worldwide. Brain inflammation plays a key role in the progression of AD. Deposition of senile plaques in the brain stimulates an inflammatory response with the overexpression of pro-inflammatory mediators, such as the neuroinflammatory cytokine. interleukin-6. Curcumin has been revealed to be a potential agent for treating AD following different neuroprotective mechanisms, such as inhibition of aggregation and decrease in brain inflammation. We synthesized new curcumin derivatives with the aim of providing good anti-aggregation capacity but also improved anti-inflammatory activity. Nine curcumin derivatives were synthesized by etherification and esterification of the aromatic region. From these derivatives, compound 8 exhibited an anti-inflammatory effect similar to curcumin, while compounds 3, 4, and 10 were more potent. Moreover, when the anti-aggregation activity is considered, compounds 3, 4, 5, 6, and 10 showed biological activity in vitro. Compound 4 exhibited a strong anti-aggregation effect higher than curcumin. Monofunctionalized curcumin derivatives showed better bioactivity than difunctionalized compounds. Moreover, the presence of bulky groups in the chemical structure of curcumin derivatives decreased bioactivity.


Assuntos
Peptídeos beta-Amiloides/metabolismo , Anti-Inflamatórios/farmacologia , Curcumina/síntese química , Curcumina/farmacologia , Citocinas/metabolismo , Animais , Anti-Inflamatórios/química , Células Cultivadas , Curcumina/química , Ciclo-Oxigenase 1/metabolismo , Relação Dose-Resposta a Droga , Feminino , Lipopolissacarídeos/toxicidade , Macrófagos/efeitos dos fármacos , Proteínas de Membrana/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Óxido Nítrico Sintase Tipo II/metabolismo , Agregados Proteicos/efeitos dos fármacos
5.
ACS Chem Neurosci ; 8(6): 1232-1241, 2017 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-28150942

RESUMO

Neuroinflammation is one of the hallmarks of Alzheimer's disease pathology. Amyloid ß has a central role in microglia activation and the subsequent secretion of inflammatory mediators that are associated with neuronal toxicity. The recognition of amyloid ß by microglia depends on the expression of several receptors implicated in the clearance of amyloid and in cell activation. CD36 receptor expressed on microglia interacts with fibrils of amyloid inducing the release of proinflammatory cytokines and amyloid internalization. The interruption of the interaction CD36-amyloid ß compromises the activation of microglia cells. We have developed and validated a new colorimetric assay to identify potential inhibitors of the binding of amyloid ß to CD36. We have found seven molecules, structural analogues of the Trichodermamide family of natural products that interfere with the interaction CD36-amyloid ß. By combining molecular docking and dynamics simulations, we suggested the second fatty acids binding site within the large luminal hydrophobic tunnel, present in the extracellular domain of CD36, as the binding pocket of these compounds. Free energy calculations predicted the nonpolar component as the driving force for the binding of these inhibitors. These molecules also inhibited the production of TNF-α, IL-6, and IL-1ß by peritoneal macrophages stimulated with fibrils of amyloid ß. This work serves as a platform for the identification of new potential anti-inflammatory agents for the treatment of Alzheimer's disease.


Assuntos
Doença de Alzheimer , Peptídeos beta-Amiloides/efeitos dos fármacos , Antígenos CD36/efeitos dos fármacos , Fármacos Neuroprotetores/química , Fármacos Neuroprotetores/farmacologia , Animais , Anti-Inflamatórios/química , Anti-Inflamatórios/farmacologia , Avaliação Pré-Clínica de Medicamentos , Humanos , Camundongos , Microglia/efeitos dos fármacos , Ligação Proteica/efeitos dos fármacos
6.
J Neuroinflammation ; 11: 48, 2014 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-24625061

RESUMO

Alzheimer's disease (AD) is a major public health problem with substantial economic and social impacts around the world. The hallmarks of AD pathogenesis include deposition of amyloid ß (Aß), neurofibrillary tangles, and neuroinflammation. For many years, research has been focused on Aß accumulation in senile plaques, as these aggregations were perceived as the main cause of the neurodegeneration found in AD. However, increasing evidence suggests that inflammation also plays a critical role in the pathogenesis of AD. Microglia cells are the resident macrophages of the brain and act as the first line of defense in the central nervous system. In AD, microglia play a dual role in disease progression, being essential for clearing Aß deposits and releasing cytotoxic mediators. Aß activates microglia through a variety of innate immune receptors expressed on these cells. The mechanisms through which amyloid deposits provoke an inflammatory response are not fully understood, but it is believed that these receptors cooperate in the recognition, internalization, and clearance of Aß and in cell activation. In this review, we discuss the role of several receptors expressed on microglia in Aß recognition, uptake, and signaling, and their implications for AD pathogenesis.


Assuntos
Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Peptídeos beta-Amiloides/metabolismo , Microglia/metabolismo , Receptores Imunológicos/metabolismo , Animais , Humanos
7.
PLoS One ; 8(12): e84107, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24358331

RESUMO

Several diterpenoids isolated from terrestrial and marine environments have been identified as important anti-inflammatory agents. Although considerable progress has been made in the area of anti-inflammatory treatment, the search for more effective and safer compounds is a very active field of research. In this study we investigated the anti-inflammatory effects of a known pseudopterane diterpene (referred here as compound 1) isolated from the octocoral Pseudopterogorgia acerosa on the tumor necrosis factor- alpha (TNF-α) and TLRs- induced response in macrophages. Compound 1 inhibited the expression and secretion of the inflammatory mediators TNF-α, interleukin (IL)-6, IL-1ß, nitric oxide (NO), interferon gamma-induced protein 10 (IP-10), ciclooxygenase (COX)-2, inducible nitric oxide synthase (iNOS) and monocyte chemoattractant protein-1 (MCP-1) induced by LPS in primary murine macrophages. This effect was associated with the inhibition of IκBα degradation and subsequent activation of NFκB. Compound 1 also inhibited the expression of the co-stimulatory molecules CD80 and CD86, which is a hallmark of macrophage activation and consequent initiation of an adaptive immune response. The anti-inflammatory effect was not exclusive to LPS because compound 1 also inhibited the response of macrophages to TNF-α and TLR2 and TLR3 ligands. Taken together, these results indicate that compound 1 is an anti-inflammatory molecule, which modulates a variety of processes occurring in macrophage activation.


Assuntos
Antozoários/química , Anti-Inflamatórios/farmacologia , Diterpenos/farmacologia , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Receptores Toll-Like/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Animais , Anti-Inflamatórios/química , Antígeno B7-1/metabolismo , Antígeno B7-2/metabolismo , Células Cultivadas , Diterpenos/química , Ativação Enzimática , Feminino , Mediadores da Inflamação/metabolismo , Interleucina-6/genética , Interleucina-6/metabolismo , Ligantes , Lipopolissacarídeos/imunologia , Ativação de Macrófagos/efeitos dos fármacos , Macrófagos/imunologia , Macrófagos Peritoneais/efeitos dos fármacos , Macrófagos Peritoneais/imunologia , Macrófagos Peritoneais/metabolismo , Masculino , Camundongos , Proteínas Quinases Ativadas por Mitógeno/metabolismo , NF-kappa B/metabolismo , Fator de Necrose Tumoral alfa/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA