RESUMO
Spatiotemporal control of full freedoms of polarized light emission is crucial in multiplexed optical computing, encryption and communication. Although recent advancements have been made in active emission or passive conversion of polarized light through solution-processed nanomaterials or metasurfaces, these design paths usually encounter limitations, such as small polarization degrees, low light utilization efficiency, limited polarization states, and lack of spatiotemporal control. Here, we addressed these challenges by integrating the spatiotemporal modulation of the LED device, the precise control and efficient polarization emission through nanomaterial assembly, and the programmable patterning/positioning using 3D printing. We achieved an extremely high degree of polarization for both linearly and circularly polarized emission from ultrathin inorganic nanowires and quantum nanorods thanks to the shear-force-induced alignment effect during the protruding of printing filaments. Real-time polarization modulation covering the entire Poincaré sphere can be conveniently obtained through the programming of the on-off state of each LED pixel. Further, the output polarization states can be encoded by an ordered chiral plasmonic film. Our device provides an excellent platform for multiplexing spatiotemporal polarization information, enabling visible light communication with an exceptionally elevated level of physical layer security and multifunctional encrypted displays that can encode both 2D and 3D information.
RESUMO
Nitric oxide (NO) plays a key role in regulating the immune system by polarizing macrophages toward the proinflammatory M1 phenotype, which is beneficial for cancer immunotherapy. We developed a Cu-organic coordination polymer network to sustainably release NO from endogenous donors. This robust polymer network was constructed through a dual-interaction process: complexation and cross-linking. The carboxylate groups of deprotonated 4-((6-(acryloyloxy)hexyl)oxy)benzoic acid (BA) served as bidentate ligands for the formation of Cu(II) complexes. The acrylate moiety of BA anchored these complexes in the polymer network, forming a cross-linked film. Cu ions within the network catalytically promoted NO release from S-nitrosoglutathione, maintaining this release even after 90 days in a physiological environment. The released NO effectively polarized both resting (M0) and tumor-promoting (M2) macrophages to the M1 phenotype. With their demonstrated physiological stability and sustained NO release performance, BA-Cu films hold potential as anticancer patches capable of continuously promoting antitumoral macrophages.
Assuntos
Cobre , Óxido Nítrico , Polímeros , Óxido Nítrico/química , Óxido Nítrico/metabolismo , Cobre/química , Animais , Camundongos , Polímeros/química , Macrófagos/metabolismo , Macrófagos/efeitos dos fármacos , Células RAW 264.7 , Humanos , Complexos de Coordenação/química , Complexos de Coordenação/farmacologia , Neoplasias/tratamento farmacológico , Antineoplásicos/farmacologia , Antineoplásicos/químicaRESUMO
The extracellular matrix (ECM) of solid tumors impacts the antitumor activities of CD8+ T and natural killer (NK) cells in a variety of ways. Cell motility is restricted by the tumor ECM which creates physical barriers. The tumor ECM directly alter the phenotypes and functions of cytotoxic lymphocytes, and indirectly influences immunological synapse-mediated interactions between cytotoxic lymphocytes and cancer cells. Therefore, strategies to improve solid tumor immunotherapy should be established by considering complex ternary interactions between cytotoxic lymphocytes, cancer cells, and the tumor ECM. Novel bioengineering tools approximating key characteristics of the tumor ECM, such as in vitro reconstituted 3D ECMs and microfluidics are valuable from a fundamental study viewpoint and from a translational perspective, aiming to enable systematic screening approaches.
Assuntos
Matriz Extracelular , Imunoterapia , Neoplasias , Humanos , Matriz Extracelular/imunologia , Matriz Extracelular/metabolismo , Neoplasias/imunologia , Neoplasias/terapia , Imunoterapia/métodos , Animais , Células Matadoras Naturais/imunologia , Microambiente Tumoral/imunologia , Linfócitos T CD8-Positivos/imunologiaRESUMO
Cancer immunotherapy is used to treat tumors by modulating the immune system. Although the anticancer efficacy of cancer immunotherapy has been evaluated prior to clinical trials, conventional in vivo animal and endpoint models inadequately replicate the intricate process of tumor elimination and reflect human-specific immune systems. Therefore, more sophisticated models that mimic the complex tumor-immune microenvironment must be employed to assess the effectiveness of immunotherapy. Additionally, using real-time imaging technology, a step-by-step evaluation can be applied, allowing for a more precise assessment of treatment efficacy. Here, an overview of the various imaging-based evaluation platforms recently developed for cancer immunotherapeutic applications is presented. Specifically, a fundamental technique is discussed for stably observing immune cell-based tumor cell killing using direct imaging, a microwell that reproduces a confined space for spatial observation, a droplet assay that facilitates cell-cell interactions, and a 3D microphysiological system that reconstructs the vascular environment. Furthermore, it is suggested that future evaluation platforms pursue more human-like immune systems.
RESUMO
Rare but consistent reports of abscopal remission in patients challenge the notion that radiotherapy (RT) is a local treatment; radiation-induced cancer cell death can trigger activation and recruitment of dendritic cells to the primary tumor site, which subsequently initiates systemic immune responses against metastatic lesions. Although this abscopal effect was initially considered an anomaly, combining RT with immune checkpoint inhibitor therapies has been shown to greatly improve the incidence of abscopal responses via modulation of the immunosuppressive tumor microenvironment. Preclinical studies have demonstrated that nanomaterials can further improve the reliability and potency of the abscopal effect for various different types of cancer by (1) altering the cell death process to be more immunogenic, (2) facilitating the capture and transfer of tumor antigens from the site of cancer cell death to antigen-presenting cells, and (3) co-delivering immune checkpoint inhibitors along with radio-enhancing agents. Several unanswered questions remain concerning the exact mechanisms of action for nanomaterial-enhanced RT and for its combination with immune checkpoint inhibition and other immunostimulatory treatments in clinically relevant settings. The purpose of this article is to summarize key recent developments in this field and also highlight knowledge gaps that exist in this field. An improved mechanistic understanding will be critical for clinical translation of nanomaterials for advanced radio-immunotherapy. This article is categorized under: Therapeutic Approaches and Drug Discovery > Nanomedicine for Oncologic Disease.
Assuntos
Nanoestruturas , Neoplasias , Humanos , Reprodutibilidade dos Testes , Imunoterapia , Neoplasias/radioterapia , Nanotecnologia , Nanoestruturas/uso terapêutico , Microambiente TumoralRESUMO
Molding processes with molds containing topographical structures have been used for fabrication of hydrogel and cryogel particles. However, they can involve difficulties in separation of fabricated particles with complex shape from the molds or repeated fabrication of the particles although the overall processes do not require much skill and equipment. In this study, molds with etched superhydrophobic patterns have been developed by etching polytetrafluoroethylene (PTFE) blocks in user-defined designs with a femtosecond (FS) laser-based etching system. Lyophilized cryogel particles with various designs and sizes were fabricated by molding precursors with these PTFE molds. Additionally, the clean and easy separation of particles from the molds allowed repeated fabrication of the particles. For an application, relatively 'big' gelatin-norbornene (GelNB) cryogel particles prepared via molding with polydimethylsiloxane (PDMS) molds, swelling in phosphate buffered saline (PBS) and slicing height in half and 'small' GelNB cryogel particles fabricated with the PTFE molds were fabricated. Then, they were used to study scaffold size effect on calvarial bone regeneration. The molds generated with the FS laser-based etching system can be useful for various applications that require the mass production of cryogel particles in various geometries.
RESUMO
Lipid-coated microbubbles are widely used as an ultrasound contrast agent, as well as drug delivery carriers. However, the two main limitations in ultrasound diagnosis and drug delivery using microbubbles are the short half-life in the blood system, and the difficulty of surface modification of microbubbles for active targeting. The exosome, a type of extracellular vesicle, has a preferentially targeting ability for its original cell. In this study, exosome-fused microbubbles (Exo-MBs) were developed by embedding the exosome membrane proteins into microbubbles. As a result, the stability of Exo-MBs is improved over the conventional microbubbles. On the same principle that under the exposure of ultrasound, microbubbles are cavitated and self-assembled into nano-sized particles, and Exo-MBs are self-assembled into exosome membrane proteins-embedded nanoparticles (Exo-NPs). The Exo-NPs showed favorable targeting properties to their original cells. A photosensitizer, chlorin e6, was loaded into Exo-MBs to evaluate therapeutic efficacy as a drug carrier. Much higher therapeutic efficacy of photodynamic therapy was confirmed, followed by cancer immunotherapy from immunogenic cell death. We have therefore developed a novel ultrasound image-guided drug delivery platform that overcomes the shortcomings of the conventional ultrasound contrast agent and is capable of simultaneous photodynamic therapy and cancer immunotherapy.
RESUMO
Natural killer (NK) cells are innate cytotoxic lymphocytes exerting cytotoxicity against virally infected cells and tumor cells. NK cell cytotoxicity is primarily determined by biochemical signals received from ligands expressed on target cell surfaces, but it is also possible that biophysical environments of tumor cells, such as nanoscale surface topography typically existing on extracellular matrixes (ECMs) or cell morphology determined by ECM spaces or cell density, regulate NK cell cytotoxicity. In this study, micro/nanofabrication technology was applied to examine this possibility. Tumor cells were plated on flat or nanogrooved surfaces, or micropatterned into circular or elliptical geometries, and the effects of surface topography and tumor cell morphology on NK cell cytotoxicity were investigated. NK cells exhibited significantly higher cytotoxicity against tumor cells on nanogrooved surfaces or tumor cells in elliptical patterns than tumor cells on flat surfaces or tumor cells in circular patterns, respectively. The amounts of stress fiber formation in tumor cells positively correlated with NK cell cytotoxicity, indicating that increased cellular tension of tumor cells, either mediated by nanogrooved surfaces or elongated morphologies, was a key factor regulating NK cell cytotoxicity. These results may provide insight into the design of NK cell-based cancer immunotherapy.
Assuntos
Citotoxicidade Imunológica , Neoplasias , Humanos , Forma Celular , Células Matadoras Naturais , Imunoterapia/métodosRESUMO
Adipose tissue is a dynamic and metabolically active organ that plays a crucial role in energy homeostasis and endocrine function. Recent advancements in lipidomics techniques have enabled the study of the complex lipid composition of adipose tissue and its role in metabolic disorders such as obesity, diabetes, and cardiovascular disease. In addition, adipose tissue lipidomics has emerged as a powerful tool for understanding the molecular mechanisms underlying these disorders and identifying bioactive lipid mediators and potential therapeutic targets. This review aims to summarize recent lipidomics studies that investigated the dynamic remodeling of adipose tissue lipids in response to specific physiological changes, pharmacological interventions, and pathological conditions. We discuss the molecular mechanisms of lipid remodeling in adipose tissue and explore the recent identification of bioactive lipid mediators generated in adipose tissue that regulate adipocytes and systemic metabolism. We propose that manipulating lipid-mediator metabolism could serve as a therapeutic approach for preventing or treating obesity-related metabolic diseases.
Assuntos
Diabetes Mellitus , Doenças Metabólicas , Humanos , Tecido Adiposo/metabolismo , Adipócitos/metabolismo , Obesidade/metabolismo , Diabetes Mellitus/metabolismo , Doenças Metabólicas/metabolismo , Metabolismo dos Lipídeos , LipídeosRESUMO
Cancer immunotherapy is a promising therapy to treat cancer patients with minimal toxicity, but only a small fraction of patients responded to it as a monotherapy. In this study, a strategy to boost therapeutic efficacy by combining an immunotherapy based on ex vivo expanded tumor-reactive T cells is devised, or adoptive cell therapy (ACT), with photothermal therapy (PTT). Smart gold nanoparticles (sAuNPs), which aggregates to form gold nanoclusters in the cells, are loaded into T cells, and their photothermal effects within T cells are confirmed. When transferred into tumor-bearing mice, large number of sAuNP-carrying T cells successfully infiltrate into tumor tissues and exert anti-tumor activity to suspend tumor growth, but over time tumor cells evade and regrow. Of note, ≈20% of injected doses of sAuNPs are deposited in tumor tissues, suggesting T cells are an efficient nanoparticle tumor delivery vehicle. When T cells no longer control tumor growth, PTT is performed to further eliminate tumors. In this manner, ACT and PTT are temporally coupled, and the combined immuno-photothermal treatment demonstrated significantly greater therapeutic efficacy than the monotherapy.
Assuntos
Nanopartículas Metálicas , Nanopartículas , Neoplasias , Humanos , Animais , Camundongos , Ouro/uso terapêutico , Linfócitos T , Nanopartículas Metálicas/uso terapêutico , Neoplasias/tratamento farmacológico , Terapia Combinada , Fototerapia , Linhagem Celular TumoralRESUMO
Accurately analyzing the functional activities of natural killer (NK) cells in clinical diagnosis remains challenging due to their coupling with other immune effectors. To address this, an integrated immune cell separator is required, which necessitates a streamlined sample preparation workflow including immunological cell isolation, removal of excess red blood cells (RBCs), and buffer exchange for downstream analysis. Here, a self-powered integrated magneto-microfluidic cell separation (SMS) chip is presented, which outputs high-purity target immune cells by simply inputting whole blood. The SMS chip intensifies the magnetic field gradient using an iron sphere-filled inlet reservoir for high-performance immuno-magnetic cell selection and separates target cells size-selectively using a microfluidic lattice for RBC removal and buffer exchange. In addition, the chip incorporates self-powered microfluidic pumping through a degassed polydimethylsiloxane chip, enabling the rapid isolation of NK cells at the place of blood collection within 40 min. This chip is used to isolate NK cells from whole blood samples of hepatocellular cancer patients and healthy volunteers and examined their functional activities to identify potential abnormalities in NK cell function. The SMS chip is simple to use, rapid to sort, and requires small blood volumes, thus facilitating the use of immune cell subtypes for cell-based diagnosis.
Assuntos
Técnicas Analíticas Microfluídicas , Microfluídica , Humanos , Separação Celular , EritrócitosRESUMO
In this work, we describe the development of an implantable ionic device that can deliver a spatially targeted light source to tumor tissues in a controllable manner. The motivation behind our approach is to overcome certain limitations of conventional approaches where light is delivered from the outside of the body and only achieves low penetration depths. Also, to avoid the issues that come from the periodic need to replace the device's battery, we utilize a wireless power transfer system synchronized with light operation in an implantable structure. In our testing of this implanted, soft ionic, gel-based device that receives power wirelessly, we were able to clearly observe its capability to effectively deliver light in a harmonious and stable configuration to adjacent tissues. This approach reduces the mechanical inconsistencies seen in conventional systems that are induced by mismatches between the mechanical strength of conventional metallic components and that of biological tissues. The light delivering performance of our device was studied in depth under the various conditions set by adjusting the area of the gel receivers, the ion concentration and the ion types used in the gel components. The enhanced antitumor effects of our device were observed through in vitro cell tests, in comparison with treatments using the conventional approach of using direct light from outside the body. Full encapsulation using biocompatible elastomers enables our device to provide good functional stability, while implantation for about 3 weeks in the in vivo model showed the effective targeted photodynamic treatments made possible by our approach. Our advanced approach of designing the implantable platform based on ionic gel components allows us to iteratively irradiate a target with light whenever required, making the technology particularly suited to long-term treatment of residual tumors while facilitating further practical and clinical development.
Assuntos
Fotoquimioterapia , Tecnologia sem Fio , Próteses e Implantes , Fontes de Energia Elétrica , TecnologiaRESUMO
The formation of an immunological synapse (IS) is essential for natural killer (NK) cells to eliminate target cells. Despite an advanced understanding of the characteristics of the IS and its formation processes, the mechanisms that regulate its stability via the cytoskeleton are unclear. Here, we show that Nogo receptor 1 (NgR1) has an important function in modulating NK cell-mediated killing by destabilization of IS formation. NgR1 deficiency or blockade resulted in improved tumor control of NK cells by enhancing NK-to-target cell contact stability and regulating F-actin dynamics during IS formation. Patients with tumors expressing abundant NgR1 ligand had poor prognosis despite high levels of NK cell infiltration. Thus, our study identifies NgR1 as an immune checkpoint in IS formation and indicates a potential approach to improve the cytolytic function of NK cells in cancer immunotherapy.
Assuntos
Sinapses Imunológicas , Neoplasias , Humanos , Receptores de Células Matadoras Naturais , Receptor Nogo 1 , Células Matadoras Naturais , Actinas , Neoplasias/patologiaRESUMO
Image-based cell sorting is essential in biological and biomedical research. The sorted cells can be used for downstream analysis to expand our knowledge of cell-to-cell differences. We previously demonstrated a user-friendly image-activated microfluidic cell sorting technique using an optimized and fast deep learning algorithm. Real-time isolation of cells was carried out using this technique with an inverted microscope. In this study, we devised a recently upgraded sorting system. The cell sorting techniques shown on the microscope were implemented as a real system. Several new features were added to make it easier for the users to conduct the real-time sorting of cells or particles. The newly added features are as follows: (1) a high-resolution linear piezo-stage is used to obtain in-focus images of the fast-flowing cells; (2) an LED strobe light was incorporated to minimize the motion blur of fast-flowing cells; and (3) a vertical syringe pump setup was used to prevent the cell sedimentation. The sorting performance of the upgraded system was demonstrated through the real-time sorting of fluorescent polystyrene beads. The sorter achieved a 99.4% sorting purity for 15 µm and 10 µm beads with an average throughput of 22.1 events per second (eps).
RESUMO
Adoptive cell therapy (ACT) using ex vivo engineered/expanded immune cells demonstrated poor efficacy against solid tumors, despite its great success in treating various hematopoietic malignancies. To improve ACT for solid tumors, it is crucial to comprehend how the numerous components of the tumor microenvironment (TME) surrounding solid tumor cells influence killing ability of immune cells. In this study, we sought to determine the effects of extracellular adhesion provided by extracellular matrix (ECM) of TME on immune cell cytotoxicity by devising microwell arrays coated with proteins either preventing or promoting cell adhesion. Solid tumor cells in bovine serum albumin (BSA)-coated microwells did not attach to the surfaces and exhibited a round morphology, but solid tumor cells in fibronectin (FN)-coated microwells adhered firmed to the substrates with a flat shape. The seeding densities of solid tumor cells and immune cells were tuned to maximize one-to-one pairing within a single microwell, and live cell imaging was performed to examine dynamic cell-cell interactions and immune cell cytotoxicity at a single cell level. Both natural killer (NK) cells and T cells showed higher cytotoxicity against round tumor cells in BSA-coated microwells compared to flat tumor cells in FN-coated microwells, suggesting that extracellular adhesion-mediated firm adhesion of tumor cells made them more resistant to immune cell-mediated killing. Additionally, NK cells and T cells in FN-coated microwells exhibited divergent dynamic behaviors, indicating that two distinct subsets of cytotoxic lymphocytes respond differentially to extracellular adhesion cues during target cell recognition.
Assuntos
Moléculas de Adesão Celular , Células Matadoras Naturais , Adesão Celular , Matriz Extracelular , Morte CelularRESUMO
Immune checkpoint inhibitors and vascular endothelial growth factor receptor tyrosine kinase inhibitors (VEGFR TKIs) are mainstream treatments for renal cell carcinoma (RCC). Both T cells and macrophages infiltrate the tumor microenvironment of RCC. CD47, an immune checkpoint of macrophages, transmits the "don't eat me" signal to macrophages. We propose a novel therapeutic strategy that activates the antitumor effect of macrophages. We found that CD47 was expressed in patients with RCC, and high CD47 expression was indicative of worse overall survival in datasets from The Cancer Genome Atlas. We observed that CD47-blocking antibodies enhanced the antitumor effect of macrophages against human RCC cell lines. Trogocytosis, rather than phagocytosis, occurred and was promoted by increased cell-to-cell contact between macrophages and RCC cells. Trogocytosis induced by CD47 blockade occurred in the presence of CD11b integrin signaling in macrophages and was augmented when RCC cells were exposed to VEGFR TKIs, except for sunitinib. In conclusion, this study presents evidence that anti-CD47 blocking antibodies improve the antitumor effect of macrophages in RCC. In combination with VEGFR TKIs, CD47 blockade is a potential therapeutic strategy for patients with RCC.
Assuntos
Carcinoma de Células Renais , Neoplasias Renais , Anticorpos Bloqueadores/farmacologia , Antígenos de Diferenciação/metabolismo , Antígeno CD47/metabolismo , Carcinoma de Células Renais/tratamento farmacológico , Carcinoma de Células Renais/metabolismo , Humanos , Neoplasias Renais/tratamento farmacológico , Neoplasias Renais/metabolismo , Macrófagos/metabolismo , Fagocitose , Receptores Imunológicos/metabolismo , Trogocitose , Microambiente Tumoral , Fator A de Crescimento do Endotélio Vascular/metabolismoRESUMO
Background: Adoptive cell therapy using umbilical cord blood (UCB)-derived allogeneic natural killer (NK) cells has shown encouraging results. However, because of the insufficient availability of NK cells and limited UCB volume, more effective culture methods are required. NK cell expansion and functionality are largely affected by the culture medium. While human serum is a major affecting component in culture media, the way it regulates NK cell functionality remains elusive. We elucidated the effects of different culture media and human serum supplementation on UCB NK cell expansion and functionality. Methods: UCB NK cells were cultured under stimulation with K562-OX40L-mbIL-18/21 feeder cells and IL-2 and IL-15 in serum-containing and serum-free culture media. The effects of the culture media and human serum supplementation on NK cell expansion and cytotoxicity were evaluated by analyzing the expansion rate, activating and inhibitory receptor levels, and the cytotoxicity of the UCB NK cells. Results: The optimal medium for NK cell expansion was Dulbecco's modified Eagle's medium/Ham's F12 with supplements and that for cytotoxicity was AIM V supplemented with Immune Cell Serum Replacement. Shifting media is an advantageous strategy for obtaining several highly functional UCB NK cells. Live cell imaging and killing time measurement revealed that human serum enhanced NK cell proliferation but delayed target recognition, resulting in reduced cytotoxicity. Conclusions: Culture medium supplementation with human serum strongly affects UCB NK cell expansion and functionality. Thus, culture media should be carefully selected to ensure both NK cell quantity and quality for adoptive cell therapy.
Assuntos
Células Matadoras Naturais , Proliferação de Células , Meios de Cultura/farmacologia , HumanosRESUMO
Structure changes mediated by anisotropic volume changes of stimuli-responsive hydrogels are useful for many research fields, yet relatively simple structured objects are mostly used due to limitation in fabrication methods. To fabricate complex 3 dimensional (3D) structures that undergo structure changes in response to external stimuli, jammed microgel-based inks containing precursors of stimuli-responsive hydrogels are developed for extrusion-based 3D printing. Specifically, the jammed microgel-based inks are prepared by absorbing precursors of poly(acrylic acid) or poly(N-isopropylacrylamide) in poly(acrylamide) (PAAm) microgels, and jamming them. The inks exhibit shear-thinning and self-healing properties that allow extrusion of the inks through a nozzle and rapid stabilization after printing. Stimuli-mediated volume changes are observed for the extruded structures when they are post-crosslinked by UV light to form interpenetrating networks of PAAm microgels and stimuli-responsive hydrogels. Using this method, a dumbbell-shaped object that can transform to a biconvex shape, and a gripper that can grasp and lift an object in response to stimuli are 3D-printed. The jammed microgel-based 3D printing strategy is a versatile method useful for variety of applications as diverse types of monomers absorbable in the microgels can be used to fabricate complex 3D objects transformable by external stimuli.
Assuntos
Tinta , Microgéis , Hidrogéis/química , Concentração de Íons de Hidrogênio , Impressão Tridimensional , TemperaturaRESUMO
Membrane nanotubes or tunneling nanotubes (TNTs) that connect cells have been recognized as a previously unidentified pathway for intercellular transport between distant cells. However, it is unknown how this delicate structure, which extends over tens of micrometers and remains robust for hours, is formed. Here, we found that a TNT develops from a double filopodial bridge (DFB) created by the physical contact of two filopodia through helical deformation of the DFB. The transition of a DFB to a close-ended TNT is most likely triggered by disruption of the adhesion of two filopodia by mechanical energy accumulated in a twisted DFB when one of the DFB ends is firmly attached through intercellular cadherin-cadherin interactions. These studies pinpoint the mechanistic questions about TNTs and elucidate a formation mechanism.
RESUMO
Recent clinical successes of chimeric antigen receptor (CAR) T cell therapy have led the booming of developments in cancer immunotherapy utilizing ex vivo engineered immune cells such as T cells and natural killer (NK) cells. However, a number of issues need to be resolved for this novel therapy to become widely applicable to cancer patients as current CAR-T cell therapies are only successful in treating some blood cancers, and economically not feasible for many patients. In this review, we describe various nanomaterial-based approaches developed to overcome current limitations in ex vivo engineered T/NK cells, along with key biological principles underlying each approach. First, nanomaterials developed to improve ex vivo expansion of T/NK cells and the basic principles of T/NK cell activation for designing nanomaterials are summarized. Second, nanomaterial-based gene delivery methods to generate genetically engineered T/NK cells are discussed with an emphasis on challenges in improving transfection efficacy. Third, nanomaterials loaded to T/NK cells to enhance their anti-tumor functions and to overcome tumor microenvironment are described with key biological characteristics of T/NK cells, which are essential for nanomaterial loading and drug release from the nanomaterials. In particular, we comment on similarities and differences of methods developed for T cells and NK cells based on the biological characteristics of each cell type.