Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Nanoscale ; 14(19): 7211-7219, 2022 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-35510424

RESUMO

Alloying group IV semiconductors offers an effective way to engineer their electronic properties and lattice dynamics. The incorporation of Sn in Ge permits a transition from an indirect to a direct bandgap semiconductor. Here, by combining polarization, laser power-dependent and temperature-dependent micro-Raman spectroscopy we explore the full lattice dynamics of Ge1-xSnx (x = 0.01, 0.06 and 0.08) alloy nanowires. In the high Sn content samples (x ≥ 0.06), a low-frequency tail and a high-frequency shoulder are observed which are associated with the F2g optical phonon mode of Ge (Ge-Ge mode). The new modes are assigned to the stretching of Ge-Ge bonds due to Sn-induced lattice relaxation and compression, respectively. The symmetry of the observed Raman modes has been studied by polarization-dependent Raman scattering. Nonlinear fitting of the laser power-dependent intensity of the high-frequency Ge-Ge mode in the Ge1-xSnx alloy nanowires with x = 0.06 and 0.08 suggests the activation of a third-order stimulated Raman scattering process, due to the high intensity localized electric field surrounding the Sn clusters. Finally, from the temperature-dependent Raman study, we have estimated the isobaric Grüneisen parameters for all the observed modes.

2.
ACS Appl Nano Mater ; 4(2): 1048-1056, 2021 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-34056558

RESUMO

Ge1-x Sn x nanowires incorporating a large amount of Sn would be useful for mobility enhancement in nanoelectronic devices, a definitive transition to a direct bandgap for application in optoelectronic devices and to increase the efficiency of the GeSn-based photonic devices. Here we report the catalytic bottom-up fabrication of Ge1-x Sn x nanowires with very high Sn incorporation (x > 0.3). These nanowires are grown in supercritical toluene under high pressure (21 MPa). The introduction of high pressure in the vapor-liquid-solid (VLS) like growth regime resulted in a substantial increase of Sn incorporation in the nanowires, with a Sn content ranging between 10 and 35 atom %. The incorporation of Sn in the nanowires was found to be inversely related to nanowire diameter; a high Sn content of 35 atom % was achieved in very thin Ge1-x Sn x nanowires with diameters close to 20 nm. Sn was found to be homogeneously distributed throughout the body of the nanowires, without apparent clustering or segregation. The large inclusion of Sn in the nanowires could be attributed to the nanowire growth kinetics and small nanowire diameters, resulting in increased solubility of Sn in Ge at the metastable liquid-solid interface under high pressure. Electrical investigation of the Ge1-x Sn x (x = 0.10) nanowires synthesized by the supercritical fluid approach revealed their potential in nanoelectronics and sensor-based applications.

3.
Chemistry ; 26(72): 17581-17587, 2020 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-33006155

RESUMO

Black phosphorus (BP) has extraordinary properties, but its ambient instability remains a critical challenge. Functionalization has been employed to overcome the sensitivity of BP to ambient conditions while preserving its properties. Herein, a simultaneous exfoliation-functionalization process is reported that functionalizes BP flakes during exfoliation and thus provides increased protection, which can be attributed to minimal exposure of the flakes to ambient oxygen and water. A tetrabutylammonium salt was employed for intercalation of BP, resulting in the formation of flakes with large lateral dimensions. The addition of an aryl iodide or an aryl iodonium salt to the exfoliation solvent creates a scalable strategy for the production of functionalized few-layer BP flakes. The ambient stability of functionalized BP was prolonged to a period of one week, as revealed by STEM, AFM, and X-ray photoelectron spectroscopy.

4.
Nanotechnology ; 31(16): 165402, 2020 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-31891917

RESUMO

The combination of two active Li-ion materials (Ge and Sn) can result in improved conduction paths and higher capacity retention. Here we report for the first time, the implementation of Ge1-x Sn x alloy nanowires as anode materials for Li-ion batteries. Ge1-x Sn x alloy nanowires have been successfully grown via vapor-liquid-solid technique directly on stainless steel current collectors. Ge1-x Sn x (x = 0.048) nanowires were predominantly seeded from the Au0.80Ag0.20 catalysts with negligible amount of growth was also directly catalyzed from stainless steel substrate. The electrochemical performance of the the Ge1-x Sn x nanowires as an anode material for Li-ion batteries was investigated via galvanostatic cycling and detailed analysis of differential capacity plots (DCPs). The nanowire electrodes demonstrated an exceptional capacity retention of 93.4% from the 2nd to the 100th charge at a C/5 rate, while maintaining a specific capacity value of ∼921 mAh g-1 after 100 cycles. Voltage profiles and DCPs revealed that the Ge1-x Sn x nanowires behave as an alloying mode anode material, as reduction/oxidation peaks for both Ge and Sn were observed, however it is clear that the reversible lithiation of Ge is responsible for the majority of the charge stored.

5.
Nanoscale ; 11(28): 13612-13619, 2019 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-31290891

RESUMO

Germanium tin (GeSn) has been proposed as a promising material for electronic and optical applications due to the formation of a direct band-gap at a Sn content >7 at%. Furthermore, the ability to manipulate the properties of GeSn at the nanoscale will further permit the realisation of advanced mechanical devices. Here we report for the first time the mechanical properties of GeSn nanowires (7.1-9.7 at% Sn) and assess their suitability as nanoelectromechanical (NEM) switches. Electron microscopy analysis showed the nanowires to be single crystalline, with surfaces covered by a thin native amorphous oxide layer. Mechanical resonance and bending tests at different boundary conditions were used to obtain size-dependent Young's moduli and to relate the mechanical characteristics of the alloy nanowires to geometry and Sn incorporation. The mechanical properties of the GeSn nanowires make them highly promising for applications in next generation NEM devices.

6.
Nat Commun ; 7: 11405, 2016 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-27095012

RESUMO

The development of non-equilibrium group IV nanoscale alloys is critical to achieving new functionalities, such as the formation of a direct bandgap in a conventional indirect bandgap elemental semiconductor. Here, we describe the fabrication of uniform diameter, direct bandgap Ge(1-x)Sn(x) alloy nanowires, with a Sn incorporation up to 9.2 at.%, far in excess of the equilibrium solubility of Sn in bulk Ge, through a conventional catalytic bottom-up growth paradigm using noble metal and metal alloy catalysts. Metal alloy catalysts permitted a greater inclusion of Sn in Ge nanowires compared with conventional Au catalysts, when used during vapour-liquid-solid growth. The addition of an annealing step close to the Ge-Sn eutectic temperature (230 °C) during cool-down, further facilitated the excessive dissolution of Sn in the nanowires. Sn was distributed throughout the Ge nanowire lattice with no metallic Sn segregation or precipitation at the surface or within the bulk of the nanowires. The non-equilibrium incorporation of Sn into the Ge nanowires can be understood in terms of a kinetic trapping model for impurity incorporation at the triple-phase boundary during growth.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA