Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Curr Biol ; 32(22): R1260-R1261, 2022 11 21.
Artigo em Inglês | MEDLINE | ID: mdl-36413965

RESUMO

Elasmobranchs (sharks, rays, and skates) are caught throughout fisheries globally, leading to over one-third of species being threatened with extinction1. Oceanic shark populations have undergone an average 71% decline over the last half century, owing to an 18-fold increase in relative fishing pressure2. Incidental capture or 'bycatch' is a primary driver of population declines, and poses an important challenge for species conservation3. This threat necessitates mitigation strategies that exist for sharks but are often focussed on haul-back and post-capture effects for longline fishing. We trialled a novel shark bycatch mitigation device ("SharkGuard") in a commercial longline fishery targeting bluefin tuna (Thunnus thynnus), where bycatch consists largely of blue sharks (Prionace glauca) and pelagic stingrays (Pteroplatytrygon violacea).


Assuntos
Tubarões , Rajidae , Animais , Pesqueiros , Atum , Conservação dos Recursos Naturais , Alimentos Marinhos
2.
Sci Adv ; 8(33): eabo1754, 2022 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-35984887

RESUMO

Knowledge of the three-dimensional movement patterns of elasmobranchs is vital to understand their ecological roles and exposure to anthropogenic pressures. To date, comparative studies among species at global scales have mostly focused on horizontal movements. Our study addresses the knowledge gap of vertical movements by compiling the first global synthesis of vertical habitat use by elasmobranchs from data obtained by deployment of 989 biotelemetry tags on 38 elasmobranch species. Elasmobranchs displayed high intra- and interspecific variability in vertical movement patterns. Substantial vertical overlap was observed for many epipelagic elasmobranchs, indicating an increased likelihood to display spatial overlap, biologically interact, and share similar risk to anthropogenic threats that vary on a vertical gradient. We highlight the critical next steps toward incorporating vertical movement into global management and monitoring strategies for elasmobranchs, emphasizing the need to address geographic and taxonomic biases in deployments and to concurrently consider both horizontal and vertical movements.

3.
Conserv Biol ; 35(5): 1463-1472, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-33615559

RESUMO

Illegal, unregulated, and unreported (IUU) fishing poses a major threat to effective management of marine resources, affecting biodiversity and communities dependent on these coastal resources. Spatiotemporal patterns of industrial fisheries in developing countries are often poorly understood, and global efforts to describe spatial patterns of fishing vessel activity are currently based on automatic identification system (AIS) data. However, AIS is often not a legal requirement on fishing vessels, likely resulting in underestimates of the scale and distribution of legal and illegal fishing activity, which could have significant ramifications for targeted enforcement efforts and the management of fisheries resources. To help address this knowledge gap, we analyzed 3 years of vessel monitoring system (VMS) data in partnership with the national fisheries department in the Republic of the Congo to describe the behavior of national and distant-water industrial fleets operating in these waters. We found that the spatial footprint of the industrial fisheries fleet encompassed over one-quarter of the Exclusive Economic Zone. On average, 73% of fishing activity took place on the continental shelf (waters shallower than 200 m). Our findings highlight that VMS is not acting as a deterrent or being effectively used as a proactive management tool. As much as 33% (13% on average) of fishing effort occurred in prohibited areas set aside to protect biodiversity, including artisanal fisheries resources, and the distant-water fleet responsible for as much as 84% of this illegal activity. Given the growth in industrial and distant-water fleets across the region, as well as low levels of management and enforcement, these findings highlight that there is an urgent need for the global community to help strengthen regional and national capacity to analyze national scale data sets if efforts to combat IUU fishing are to be effective.


Amenazas de la Pesca Ilegal, No Regulada y No Reportada para la Biodiversidad y la Seguridad Alimentaria en la República del Congo Resumen La pesca ilegal, no regulada y no reportada (INN) representa una amenaza importante para el manejo efectivo de los recursos marinos, lo que afecta a la biodiversidad y a las comunidades que dependen de estos recursos costeros. Los patrones espaciotemporales de las pesquerías industriales en los países en desarrollo a menudo están poco comprendidas, y los esfuerzos globales para describir los patrones espaciales de la actividad de los navíos pesqueros actualmente están basados en los datos del sistema automático de identificación (SAI). Sin embargo, el SAI no es siempre un requerimiento legal en los navíos pesqueros, lo que probablemente resulta en valores subestimados de la escala y la distribución de la actividad pesquera legal e ilegal, lo que podría tener ramificaciones significativas para los esfuerzos enfocados de aplicación de la ley y para el manejo de los recursos de las pesquerías. Para ayudar a completar este vacío en el conocimiento, analizamos tres años de datos del sistema de monitoreo de navíos (SMN) en asociación con el departamento nacional de pesquerías de la República del Congo para describir el comportamiento de las flotas industriales nacionales y de altura que operan en estas aguas. Descubrimos que la huella espacial de la flota de pesquerías industriales abarcó más de un cuarto de la Zona Económica Exclusiva. En promedio, el 73% de la actividad pesquera se realizó en el talud continental (aguas con una profundidad menor a 200 m). Nuestros descubrimientos resaltan que el SMN no está actuando como un disuasivo o no se está usando efectivamente como una herramienta proactiva de manejo. Un máximo del 33% (13% en promedio) de los esfuerzos de pesca ocurrieron en áreas prohibidas apartadas para proteger a la biodiversidad, incluyendo los recursos para la pesca artesanal, con el 84% de la responsabilidad de esta actividad ilegal cayendo sobre las flotas de altura. Dado el crecimiento de flotas industriales y de altura en la región, así como los bajos niveles de manejo y aplicación de la ley, estos resultados resaltan la necesidad urgente que existe para que la comunidad global ayude a fortalecer la capacidad regional y nacional para analizar los conjuntos de datos de escala nacional si se espera que los esfuerzos para combatir la pesca INN sean efectivos.


Assuntos
Conservação dos Recursos Naturais , Segurança Alimentar , Biodiversidade , Congo , Pesqueiros
4.
Mov Ecol ; 8: 31, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32695402

RESUMO

BACKGROUND: State-space models are important tools for quality control and analysis of error-prone animal movement data. The near real-time (within 24 h) capability of the Argos satellite system can aid dynamic ocean management of human activities by informing when animals enter wind farms, shipping lanes, and other intensive use zones. This capability also facilitates the use of ocean observations from animal-borne sensors in operational ocean forecasting models. Such near real-time data provision requires rapid, reliable quality control to deal with error-prone Argos locations. METHODS: We formulate a continuous-time state-space model to filter the three types of Argos location data (Least-Squares, Kalman filter, and Kalman smoother), accounting for irregular timing of observations. Our model is deliberately simple to ensure speed and reliability for automated, near real-time quality control of Argos location data. We validate the model by fitting to Argos locations collected from 61 individuals across 7 marine vertebrates and compare model-estimated locations to contemporaneous GPS locations. We then test assumptions that Argos Kalman filter/smoother error ellipses are unbiased, and that Argos Kalman smoother location accuracy cannot be improved by subsequent state-space modelling. RESULTS: Estimation accuracy varied among species with Root Mean Squared Errors usually <5 km and these decreased with increasing data sampling rate and precision of Argos locations. Including a model parameter to inflate Argos error ellipse sizes in the north - south direction resulted in more accurate location estimates. Finally, in some cases the model appreciably improved the accuracy of the Argos Kalman smoother locations, which should not be possible if the smoother is using all available information. CONCLUSIONS: Our model provides quality-controlled locations from Argos Least-Squares or Kalman filter data with accuracy similar to or marginally better than Argos Kalman smoother data that are only available via fee-based reprocessing. Simplicity and ease of use make the model suitable both for automated quality control of near real-time Argos data and for manual use by researchers working with historical Argos data.

5.
Sci Rep ; 10(1): 1661, 2020 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-32015388

RESUMO

Migratory movements in response to seasonal resources often influence population structure and dynamics. Yet in mobile marine predators, population genetic consequences of such repetitious behaviour remain inaccessible without comprehensive sampling strategies. Temporal genetic sampling of seasonally recurring aggregations of planktivorous basking sharks, Cetorhinus maximus, in the Northeast Atlantic (NEA) affords an opportunity to resolve individual re-encounters at key sites with population connectivity and patterns of relatedness. Genetic tagging (19 microsatellites) revealed 18% of re-sampled individuals in the NEA demonstrated inter/multi-annual site-specific re-encounters. High genetic connectivity and migration between aggregation sites indicate the Irish Sea as an important movement corridor, with a contemporary effective population estimate (Ne) of 382 (CI = 241-830). We contrast the prevailing view of high gene flow across oceanic regions with evidence of population structure within the NEA, with early-season sharks off southwest Ireland possibly representing genetically distinct migrants. Finally, we found basking sharks surfacing together in the NEA are on average more related than expected by chance, suggesting a genetic consequence of, or a potential mechanism maintaining, site-specific re-encounters. Long-term temporal genetic monitoring is paramount in determining future viability of cosmopolitan marine species, identifying genetic units for conservation management, and for understanding aggregation structure and dynamics.


Assuntos
Tubarões/genética , Tubarões/fisiologia , Migração Animal , Animais , Oceano Atlântico , Conservação dos Recursos Naturais , Feminino , Fluxo Gênico , Variação Genética , Genética Populacional , Irlanda , Masculino , Repetições de Microssatélites , Densidade Demográfica , Estações do Ano , Análise Espaço-Temporal
6.
Mar Environ Res ; 147: 126-137, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-31097216

RESUMO

Detecting the effects of introduced artificial structures on the marine environment relies upon research and monitoring programs that can provide baseline data and the necessary statistical power to detect biological and/or ecological change over relevant spatial and temporal scales. Here we report on, and assess the use of, Baited Remote Underwater Video (BRUV) systems as a technique to monitor diversity, abundance and assemblage composition data to evaluate the effects of marine renewable energy infrastructure on mobile epi-benthic species. The results from our five-year study at a wave energy development facility demonstrate how annual natural variation (time) and survey design (spatial scale and power) are important factors in the ability to robustly detect change in common ecological metrics of benthic and bentho-pelagic ecosystems of the northeast Atlantic. BRUV systems demonstrate their capacity for use in temperate, high energy marine environments, but also how weather, logistical and technical issues require increased sampling effort to ensure statistical power to detect relevant change is achieved. These factors require consideration within environmental impact assessments if such survey methods are to identify and contribute towards the management of potential positive or negative effects on benthic systems.


Assuntos
Ecossistema , Peixes , Animais , Conservação dos Recursos Naturais , Meio Ambiente , Energia Renovável
7.
Ecol Evol ; 4(12): 2375-83, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25360274

RESUMO

Shark take, driven by vast demand for meat and fins, is increasing. We set out to gain insights into the impact of small-scale longline fisheries in Peru. Onboard observers were used to document catch from 145 longline fishing trips (1668 fishing days) originating from Ilo, southern Peru. Fishing effort is divided into two seasons: targeting dolphinfish (Coryphaena hippurus; December to February) and sharks (March to November). A total of 16,610 sharks were observed caught, with 11,166 identified to species level. Of these, 70.6% were blue sharks (Prionace glauca), 28.4% short-fin mako sharks (Isurus oxyrinchus), and 1% were other species (including thresher (Alopias vulpinus), hammerhead (Sphyrna zygaena), porbeagle (Lamnus nasus), and other Carcharhinidae species (Carcharhinus brachyurus, Carcharhinus falciformis, Galeorhinus galeus). Mean ± SD catch per unit effort of 33.6 ± 10.9 sharks per 1000 hooks was calculated for the shark season and 1.9 ± 3.1 sharks per 1000 hooks were caught in the dolphinfish season. An average of 83.7% of sharks caught (74.7% blue sharks; 93.3% mako sharks) were deemed sexually immature and under the legal minimum landing size, which for species exhibiting k-selected life history traits can result in susceptibility to over exploitation. As these growing fisheries operate along the entire Peruvian coast and may catch millions of sharks per annum, we conclude that their continued expansion, along with ineffective legislative approaches resulting in removal of immature individuals, has the potential to threaten the sustainability of the fishery, its target species, and ecosystem. There is a need for additional monitoring and research to inform novel management strategies for sharks while maintaining fisher livelihoods.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA